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Question 1(a) Let n be a fixed positive integer and let Zn be the ring of integers modulo n.
Let

G = {[a] ∈ Zn | a 6= 0, (a, n) = 1}

Show that G is a group under multiplication defined in Zn. Hence or otherwise show that
aφ(n) ≡ 1 mod n for all integers a relatively prime to n, where φ(n) denotes the number of
positive integers that are less than n and relatively prime to n.

Solution. The only thing we have to show is that every element in G is invertible as we
already know that G is multiplicatively closed, and has identity element namely [1]. Let
a1, . . . , am,m = φ(n) be representatives of prime residue classes modulo n. Let a be any
integer such that (a, n) = 1, i.e. a is coprime with n. Then [aa1], [aa2], . . . , [aam] are all
distinct because aai ≡ aaj mod n ⇒ a(ai − aj) ≡ 0 mod n, but (a, n) = 1, therefore
ai − aj ≡ mod n, which is not true. Thus there exists a j such that aaj ≡ 1 mod n, note
that G = {[a1], [a2], . . . , [am]} = {[aa1], [aa2], . . . , [aam]} and [1] ∈ G. Consequently [a] is
invertible, in fact [a][aj] = [1].

We know that if G is a group of order n, then x ∈ G⇒ xn = e for every x ∈ G, where e
is the identity of G — consider H the cyclic subgroup of G generated by x. Using Lagrange’s
theorem, which says that the order of a subgroup divides the order of a group if the group
is finite, we get o(x) = o(H) | o(G) = n. Thus n = o(x)k, so xn = xo(x)k = ek = e.

Thus if a is any integer such that (a, n) = 1, then [a] ∈ G ⇒ [a]φ(n) = [1] because
o(G) = φ(n). Hence aφ(n) ≡ 1 mod n.

Question 1(b) Let M be a subgroup and N a normal subgroup of a group G. Show that
MN is a subgroup of G and MN/N is isomorphic to M/M ∩N .

Solution.
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1. MN 6= ∅

2. x, y ∈ MN ⇒ x = m1n1, y = m2n2 where m1,m2 ∈ M,n1, n2 ∈ N . Then xy =
m1n1m2n2 = m1m2m

−1
2 n1m2n2. Since N is a normal subgroup, m−1

2 n1m2 ∈ N , there-
fore xy = m1m2n

∗
1n2 where n∗1 = m−1

2 n1m2, showing that xy ∈MN .

3. x ∈MN ⇒ x−1 = n−1
1 m−1

1 = m−1
1 m1n

−1
1 m−1

1 ∈MN

Thus MN is a subgroup of G.
Consider the function f : M −→MN/N defined by f(m) = mN . Then

1. f(m1m2) = m1m2N = m1Nm2N = f(m1)f(m2) as N is a normal subgroup.

2. f is onto. If xN is any element of MN/N where x = mn, then xN = mnN = mN =
f(m).

3. ker f = {m | f(m) = mN = N ⇔ m ∈ N} = M ∩N .

Thus f is a homomorphism, and by the fundamental theorem of homomorphisms, M/M ∩
N 'MN/N .

Question 2(a) Let F be a finite field. Show that the characteristic of F must be a prime
integer p and the number of elements in F must be pm for some positive integer m.

Solution. Let characteristic F = n. Let n = λµ and let a ∈ F, a 6= 0, 0 = na2 = λaµa =
0⇒ λa = 0 or µa = 0. Suppose λa = 0. Then for any b ∈ F, b 6= 0, λab = a.λb = 0⇒ λb = 0
because a 6= 0. Thus λx = 0 for every x ∈ F , so λ = n because n is the smallest such integer.
Thus if n = λµ, then λ = n or µ = n, so n is prime, say p.

Consider the mapping f : Z −→ F defined by f(n) = ne where e is the multiplicative
identity of F . It is obvious that f is a homomorphism, and that ker f is 〈p〉, the ideal
generated by p. Thus Z/〈p〉 is isomorphic to a subfield of F . In other words F contains a
field Λ having p elements. If (F : Λ) = m, then F has pm elements. For details see question
2(c)(ii) year 2002.

Question 2(b) Let F be a field and F [x] denote the set of all polynomials defined over F .
If f(x) is an irreducible polynomial in F [x], show that the ideal 〈f(x)〉 generated by f(x) in
F [x] is maximal and F [x]/〈f(x)〉 is a field.

Solution. Let A by an ideal, A ⊃ 〈f(x)〉. Since F [x] is a principal ideal domain, let
A = 〈g(x)〉. Then A ⊃ 〈f(x)〉 ⇒ f(x) = g(x)h(x). But f(x) is irreducible, so either g(x) is
a unit or g(x) is an associate of f(x). Thus 〈g(x)〉 = F [x] or 〈g(x)〉 = 〈f(x)〉 ⇒ 〈f(x)〉 is
maximal.

In order to show that F [x]/〈f(x)〉 is a field, the only thing we have to show is that any
non-zero element in F [x]/〈f(x)〉 is invertible. Let g(x) + 〈f(x)〉 be any non-zero element in
F [x]/〈f(x)〉 i.e.f(x) - g(x). This means that f(x), g(x) are comprime, therefore there exist
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a(x), b(x) such that a(x)g(x) + b(x)f(x) = 1. Consequently a(x)g(x) ≡ 1 mod f(x), thus
g(x) + 〈f(x)〉 has a(x) + 〈f(x)〉 as an inverse in F [x]/〈f(x)〉.

Alternately, let g(x) be as above. Consider M = ideal generated by f(x), g(x). Since
f(x) - g(x), M 6= 〈f(x)〉, and as 〈f(x)〉 is maximal, M = F [x]. Thus there exists a(x), b(x) ∈
F [x] such that a(x)g(x) + b(x)f(x) = 1 and we get the same conclusion as above.

Question 2(c) Show that a finite commutative ring with no zero divisors must be a field.

Solution. See Lemma 3.2.2 page 127 of Algebra by Herstein.
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