UPSC Civil Services Main 2002 - Mathematics Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

December 16, 2007

Question 1(a) Show that a group of order 35 is cyclic.
Solution. Let G be a group of order 35. By Sylow's theorem, G has a subgroup of order 7 and the number of such groups is $\equiv 1 \bmod 7$ and divides 35 . If the number is $7 t+1$, then $7 t+1|35 \Rightarrow 7 t+1| 5 \Rightarrow t=0$. Thus G has a unique Sylow subgroup H of order 7 , which must be a normal subgroup of G. Similarly the number of 5 -Sylow subgroups is $\equiv 1 \bmod 5$ and divides 35 . If this number is $5 r+1$, then $5 r+1|35 \Rightarrow 5 r+1| 7 \Rightarrow r=0$. Thus G has a unique 5-Sylow group say K which is normal in G.

This means $H K$ is a subgroup of $G . o(H)=7, o(K)=5 \Rightarrow H \cap K=\{e\}$. Let $x \in H, o(x)=7, y \in K, o(y)=5$. Now $x y x^{-1} y^{-1}=x \cdot y x^{-1} y^{-1} \in H, x y x^{-1} \cdot y^{-1} \in K \Rightarrow$ $x y x^{-1} y^{-1}=e \Rightarrow x y=y x \Rightarrow o(x y)=35$. Thus G is cyclic, $x y$ being a generator.

More generally, $o(G)=p q, p<q, p \nmid q-1 \Rightarrow G$ is cyclic of order $p q$, using a similar argument.

Question 1(b) Show that the polynomial $25 x^{4}+9 x^{3}+3 x+3$ is irreducible over the field of rational numbers.

Solution. Eisenstein's irreducibility criterion states that if $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ is a polynomial with integer coefficients and if there is a prime p such that $p \mid a_{i}, 0 \leq i<$ $n, p^{2} \nmid a_{0}, p \nmid a_{n}$ then $f(x)$ is irreducible over the rationals. (Proof: see theorem 3.10.2 page 160 of Topics in Algebra by Herstein). In the present case $p=3$ does the trick.

Question 2(a) 1. Show that a group of order p^{2} is abelian where p is a prime number.
2. Prove that a group of order 42 has a normal subgroup of order 7 .

Solution.

1. $o(G)=p^{2}$. Let C be the center of G. Then the center of G is nontrivial $\because o(G)$ is a power of a prime. If $o(C)=p^{2}$, then $G=C \Rightarrow G$ is abelian. If $o(C)=p$, then G / C is cyclic of order p. Let G / C be generated by $a C$. Let $x, y \in G \Rightarrow x C=a^{r} C, y C=a^{s} C$ for some $r, s, 1 \leq r, s<p$. Then

$$
\begin{aligned}
& \Rightarrow \quad x=a^{r} c_{1}, y=a^{s} c_{2} \text { for some } c_{1}, c_{2} \in C \\
& \Rightarrow \quad x y=a^{r} c_{1} a^{s} c_{2} \\
& \Rightarrow \quad x y=a^{r} a^{s} c_{1} c_{2} \quad \because c_{1} a^{s}=a^{s} c_{1} \\
& \Rightarrow \quad x y=a^{s} c_{2} a^{r} c_{1}=y x
\end{aligned}
$$

Thus G is abelian.
2. By Sylow's theorem, G has a subgroup of order 7. The number of Sylow subgroups is $\equiv 1 \bmod 7$ and divides 42 . If this number is $7 r+1$, then $7 r+1|42 \Rightarrow 7 r+1| 6 \Rightarrow$ $r=0$. Thus this subgroup H is unique. Consider $a H a^{-1}, a \in G . o\left(a H a^{-1}\right)=o(H)=$ $7 \therefore a H a^{-1}=H$ as H is the unique subgroup of order 7 . Thus H is a normal subgroup of order 7 .

Question 2(b) Prove that in the ring $F[x]$ of polynomials over a field F, the ideal $I=[p(x)]$ is maximal $\Longleftrightarrow p(x)$ is irreducible over F.

Solution. Let I be maximal. If $g(x)$ is any divisor of $p(x)$, then $[g(x)] \supseteq I \Rightarrow[g(x)]=F[x]$ or $[g(x)]=[p(x)]$. Thus $g(x)$ is a unit or $g(x)$ is an associate of $p(x)$. Thus $p(x)$ is irreducible.

Conversely let $p(x)$ be irreducible. Let M be an ideal, $M \supseteq[p(x)]$. Since $F[x]$ is Euclidean and therefore a Principal Ideal Domain, $M=[f(x)]$ say. Then $p(x) \in[f(x)] \Rightarrow f(x) \mid p(x)$. Thus $f(x)$ is a unit or $f(x)$ is an associate of $p(x) \Rightarrow M=F[x]$ or $M=[p(x)] \Rightarrow I$ is maximal.

Question 2(c) 1. Show that every finite Integral domain is a field.

2. Let F be a field with q elements and let E be an extension of F of degree n over F. Show that E has q^{n} elements.

Solution.

1. See Lemma 3.2.2 page 127 of Algebra by Herstein.
2. E as a vector space over F has degree n. If x_{1}, \ldots, x_{n} is a basis of E over F, then $\alpha \in E \Rightarrow \alpha=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}$ where $\alpha_{1}, \ldots, \alpha_{n} \in F$ are uniquely determined by α. Thus $E=\left\{\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n} \mid \alpha_{i} \in F\right\} \simeq F^{n} \Longrightarrow|E|=q^{n}$, as each α_{i} has q choices.
