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Question 1(a) If H is a subgroup of a group G such that x2 ∈ H for every x ∈ G then
prove that H is a normal subgroup of G.

Solution. Let h ∈ H, g ∈ G. Then h(h−1g−1)2g2(g−1hg)2 = hh−1g−1h−1g−1g2g−1hgg−1hg =
g−1hg. Now x ∈ G ⇒ x2 ∈ H, therefore (h−1g−1)2, g2, (g−1hg)2 ∈ H Consequently for any
h ∈ H, g−1hg ∈ H. Thus H is a normal subgroup of G.

Alternative solution. We shal prove that Hx = xH for every x ∈ G. Clearly for
any h ∈ H, xh = xh.xh.h−1x−1x−1x = h1x, where h1 = (xh)2h−1x−2 ∈ H, this shows that
xH ⊆ Hx. Similarly hx = xx−1x−1h−1hxhx = xh1 with h1 = x−2h−1(hx)2 ∈ H. Thus
Hx ⊆ xH, so xH = Hx for every x ∈ G. Hence H is a normal subgroup of G.

Question 1(b) Show that the ring Z[i] = {a+ bi | a, b ∈ Z, i =
√
−1} of Gaussian integers

is a Euclidean domain.

Solution. For α = a+ ib ∈ Z[i], we define N(α) = a2 + b2. Clearly (i) N(α) > 0 for α 6= 0,
(ii) For α 6= 0, β 6= 0, N(αβ) = N(α)N(β). Let α = a + ib, β = c + id 6= 0. We shall find
γ, δ ∈ Z[i] such that α = βγ + δ where δ = 0 or N(δ) < N(β). This will prove Z[i] is a
Euclidean domain for the Euclidean function N(α).

α

β
=
a+ ib

c+ id
=

(a+ ib)(c− id)

c2 + d2
= p+ iq

where p, q are rational numbers. We determine integers x, y so that |p−x| ≤ 1
2
, |q−y| ≤ 1

2

— x, y are the integers nearest to p, q respectively. Let γ = x+ iy. Then

α

β
= γ + (p− x) + (q − y)i⇒ α = βγ + βη = βγ + δ

where δ = βη. Clearly δ = α − βγ is a Gaussian integer, and if δ 6= 0, then N(δ) =
N(β)[(p− x)2 + (q − y)2] ≤ N(β)[1

4
+ 1

4
] < N(β). This completes the proof.
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Question 2(a) 1. Let R be the ring of all real-valued continuous functions on the closed
interval [0, 1]. Let M = {f(x) ∈ R | f(1

3
) = 0}. Show that M is a maximal ideal of

R.

2. Let M,N be two ideals of a ring R. Show that M ∪N is an ideal of R if and only of
either M ⊆ N or N ⊆M .

Solution.

1. M is an ideal. M 6= ∅ since the function f(x) = 0 clearly belongs to M .

Let f, g ∈ M then the function (f − g)(x) = f(x)− g(x) is continuous everywhere on
[0, 1] and (f − g)(1

3
) = f(1

3
) − g(1

3
) = 0, so f − g ∈ M . Thus M is a subgroup of the

group (R,+).

If g ∈ M and f ∈ R, then the function (fg)(x) = f(x)g(x) is continuous everywhere
on [0, 1] and (fg)(1

3
) = f(1

3
)g(1

3
) = 0 as g(1

3
) = 0, thus fg ∈M . Thus M is an ideal of

R. Note that R is a commutative ring with unity I, where I(x) = 1.

Let M ⊆ A ⊆ R where A is an ideal of R. If M 6= A, we shall show that A = R. Let
β ∈ A−M , thus β(1

3
) = c 6= 0. Define α : [0, 1] −→ [0, 1] by α(x) = c for all x ∈ [0, 1].

Then the function µ = β − α ∈M ⊂ A as µ(1
3
) = 0. Thus α = β − µ ∈ A as β, µ ∈ A.

Now consider γ : [0, 1] −→ [0, 1] defined by γ(x) = 1
c

for all x. Clearly γ ∈ R. Since A
is an ideal, γα ∈ A. But γα(x) = 1

c
c = 1, thus γα = I ∈ A. Since I is unity in R, it

follows that A = R, hence M is a maximal ideal of R.

Note: The converse of the above statement is also true i.e. if M is a maximal ideal
of R, then there exists number r ∈ [0, 1] such that M = {f | f ∈ R, f(r) = 0}. The
proof needs compactness of [0, 1] which is not an algebraic concept.

2. If M ⊆ N , then M ∪N = N and if N ⊆M , then M ∪N = M , so in both cases M ∪N
is an ideal of R.

Conversely, let M ∪ N be an ideal of R. If possible, let us assume that M * N and
N * M , this means there exist x ∈M −N, y ∈ N −M . Now x ∈M, y ∈ N ⇒ x, y ∈
M ∪N . But M ∪N is an ideal, thus x− y ∈M ∪N , hence x− y ∈M or x− y ∈ N . If
x− y ∈M , then x− (x− y) = y ∈M as M is an ideal, but this is a contradiction. If
x− y ∈ N , then (x− y) + y = x ∈ N , which is also not possible. Thus our assumption
that M * N and N * M is incorrect, so if M ∪ N is an ideal, either M ⊆ N or
N ⊆M .

Question 2(b) 1. Show that Q(
√

3, i) is the splitting field for x5− 3x3 +x2− 3 where Q
is the field of rational numbers.

2. Prove that x2 + x + 4 is irreducible over F , the field of integers modulo 11 and prove
further that F [x]/〈x2 + x+ 4〉 is a field with 121 elements.
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Solution.

1. x5− 3x3 +x2− 3 = x3(x2− 3) +x2− 3 = (x2− 3)(x3 + 1) = (x2− 3)(x+ 1)(x2−x+ 1).

Thus the roots of x5 − 3x3 + x2 − 3 are −1,±
√

3, 1±i
√

3
2

. Consequently all the roots of

the given polynomial lie in the field Q(
√

3, i). Conversely, if K is any field containing
Q, which contains the roots of the given polynomial, then

√
3 ∈ K, and therefore

i ∈ K, thus Q(
√

3, i) ⊆ K. Thus Q(
√

3, i) is the smallest field containing all the roots
of x5 − 3x3 + x2 − 3. Thus Q(

√
3, i) is the splitting field of the given polynomial over

Q.

2. See question 2(c) from 1996 for the irreducibility of x2 + x+ 4 over F .

See question 2(b) from 1992 for the second part.

Question 2(c) If R is a unique factorization domain (UFD), then prove that R[x] is also
a UFD.

Solution. Let F denote the field of quotients of R.
Result 1. If f(x) ∈ R[x] is irreducible, then f(x) remains irreducible in F [x]. (Note that

the converse is obvious as R[x] ⊆ F [x].) Let f(x) be reducible in F [x] i.e. f(x) = g(x)h(x),
where deg g(x) < deg f(x), deg h(x) < deg f(x) and g(x), h(x) ∈ F [x]. We can write g(x) =
a1b
−1
1 g1(x), h(x) = a2b

−1
2 h1(x), where g1(x), h1(x) ∈ R[x] and are primitive and a1, b1, a2, b2 ∈

R (b1 is the LCM of all the denominators of g(x), and a1 is the GCD of the numerators). Thus
b1b2f(x) = a1a2g1(x)h1(x). But by Gauss Lemma, the product of two primitive polynomials
is primitive, therefore g1(x)h1(x) is primitive. Since f(x) is irreducible in R[x], therefore it
is also primitive. Consequently b1b2 = content of b1b2f(x) = a1a2 = content of a1a2g(x)h(x)
and therefore we get f(x) = g1(x)h1(x), thus f(x) is reducible in R[x]. Hence if f(x) is
irreducible in R[x] then it is irreducible in F [x].

Result2. Factorization exists in R[x]. Let f(x) ∈ R[x], f(x) 6= 0 and f(x) not a unit.
Let a = c(f) = content of f then f = af ∗ where f ∗ is a primitive polynomial in R[x] of the
same degree as f . Since F [x] is a UFD (being a Euclidean domain), we can write f ∗(x) =
p1(x) . . . pr(x), where each pi(x) is an irreducible element of F [x]. Let pi(x) = aib

−1
i qi(x),

where ai, bi ∈ R, and qi(x) ∈ R[x] is a primitive polynomial. Thus we get

b1 . . . brf
∗(x) = a1 . . . arq1(x) . . . qr(x)

But the product q1(x) . . . qr(x) is again primitive (Gauss Lemma), therefore equating the
contents of both sides (note that f ∗(x) is primitive), we get b1 . . . br = a1 . . . ar, therefore

f ∗(x) = q1(x) . . . qr(x)

where each qi(x) ∈ R[x] and is irreducible in F [x] and therefore irreducible in R[x]. Since R
is a UFD, a = π1 . . . πt, where π1, . . . , πt are irreducible in R. Thus

f(x) = π1 . . . πtq1(x) . . . qr(x)
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where π1, . . . , πt, q1(x), . . . , qr(x) are irreducible elements of R[x]. Note that π1, . . . , πt being
constants cannot have a proper factorization in R[x] if they do not have one in R. Hence
the result is established.

Result 3. Uniqueness. If possible, let

π1 . . . πtq1(x) . . . qr(x) = π′1 . . . π
′
ug1(x) . . . gs(x)

where π1, . . . , πt, π
′
1, . . . , π

′
u are irreducible elements in R and q1(x) . . . qr(x), g1(x) . . . gs(x) are

irreducible elements of R[x]. Using Gauss Lemma, we get that the products q1(x) . . . qr(x),
g1(x) . . . gs(x) are primitive. Comparing the contents of both sides, we get π1 . . . πt =
π′1 . . . π

′
u. But R is a UFD, so t = u, and we can reorder the π′i to ensure that each πi

is an associate of π′i. Thus we are left with q1(x) . . . qr(x) = g1(x) . . . gs(x). We consider this
equation in F [x]. By the first result each qi, gj, 1 ≤ i ≤ r, 1 ≤ j ≤ s is irreducible in F [x].
Since F [x] is a UFD, we get r = s and by reordering, we get that qi(x) is an associate of
gi(x) in F [x]. We can assume w.l.o.g. that qi(x) = (unit in F [x])gi(x), 1 ≤ i ≤ r. Since
units in F [x] are non-zero constants, these are of the form cd−1 where c, d ∈ R. Thus we
get diqi(x) = cigi(x). Using contents, we conclude that di = ci, thus qi(x) is an associate of
gi(x) in R[x], so the factorization is unique.

Thus R[x] is a UFD.
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