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Question 1(a) If H is a subgroup of a group G such that x> € H for every v € G then
prove that H is a normal subgroup of G.

Solution. Let h € H,g € G. Then h(h='g ")?¢*(g7 hg)? = hh =gt h =g~ g* g thgg~thg =
g thg. Now z € G = 2?2 € H, therefore (h"'g71)2, ¢2, (g7 'hg)?> € H Consequently for any
h e H g 'hg € H. Thus H is a normal subgroup of G.

Alternative solution. We shal prove that Hx = xH for every x € G. Clearly for
any h € H,zh = zh.xh.h 'z~ 'z7 ' = hyz, where hy = (zh)*h~'2™2 € H, this shows that
rH C Hx. Similarly hx = za~ ‘o 'h~'hzhx = zhy with hy = 272h"}(hx)? € H. Thus
Hx CxH,so xH = Hx for every x € G. Hence H is a normal subgroup of G. |

Question 1(b) Show that the ring Z[i] = {a +bi | a,b € Z,i = \/—1} of Gaussian integers
is a Buclidean domain.

Solution. For a = a +ib € Z[i], we define N(a) = a® + b*. Clearly (i) N(a) > 0 for a # 0,

(ii) For a # 0,8 # 0, N(af) = N(a)N(5). Let a = a +ib, 3 = ¢ + id # 0. We shall find
7,0 € Zli] such that o = v + § where § = 0 or N(J) < N(F). This will prove Z[i] is a
Euclidean domain for the Euclidean function N(«).

a a+ib (a+ib)(c—id)
B ce+id 2+ d?
where p, ¢ are rational numbers. We determine integers z, y so that [p—z| < 3, |g—y| < §
— x,y are the integers nearest to p, g respectively. Let v = x 4 4y. Then

=p+iq

%—7+(p—x)+(q—y)iia—ﬁwr@n—ﬁwr(?

where § = fn. Clearly § = a — [y is a Gaussian integer, and if § # 0, then N(J) =
N(B)[(p—)*+ (¢ —y)*] < N(B)[3 + ;] < N(3). This completes the proof. |
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Question 2(a) 1. Let R be the ring of all real-valued continuous functions on the closed
interval [0,1]. Let M = {f(z) € R | f(3) =0}. Show that M is a mazimal ideal of
R.

2. Let M, N be two ideals of a ring R. Show that M U N is an ideal of R if and only of
either M C N or N C M.

Solution.

1. M is an ideal. M # () since the function f(z) = 0 clearly belongs to M.

Let f,g € M then the function (f — g)(x) = f(z) — g(x) is continuous everywhere on
0,1] and (f —9)(3) = f(5) —9(3) =0, 50 f —g € M. Thus M is a subgroup of the
group (R, +).

If g€ M and f € R, then the function (fg)(z) = f(z)g(x) is continuous everywhere
on [0,1] and (fg)(3) = f(5)9(5) = 0 as g(5) = 0, thus fg € M. Thus M is an ideal of
R. Note that R is a commutative ring with unity 7, where I(z) = 1.

Let M C A C R where A is an ideal of R. If M # A, we shall show that A = R. Let
e A—M, thus 3(3) = ¢ # 0. Define o : [0,1] — [0,1] by a(z) = ¢ for all z € [0,1].
Then the function p=f—ae M C Aasu(z) =0. Thusa=3—pe Aas 3,p € A
Now consider 7 : [0,1] — [0, 1] defined by y(z) = 1 for all z. Clearly v € R. Since A
is an ideal, ya € A. But va(z) = %c =1, thus ya = I € A. Since [ is unity in R, it
follows that A = R, hence M is a maximal ideal of R.

Note: The converse of the above statement is also true i.e. if M is a maximal ideal
of R, then there exists number r € [0,1] such that M = {f | f € R, f(r) = 0}. The
proof needs compactness of [0, 1] which is not an algebraic concept.

2. f M C N,then MUN = N and if N C M, then MUN = M, so in both cases M UN
is an ideal of R.

Conversely, let M U N be an ideal of R. If possible, let us assume that M ¢ N and
N ¢ M, this means there exist 1 € M — N,y € N— M. Nowz € M,y € N = x,y €
MUN. But MUN is an ideal, thusx —y € MUN, hencex —ye€ Morx—y € N. If
x—y € M, then z — (xr —y) =y € M as M is an ideal, but this is a contradiction. If
x—y € N, then (x —y)+y =« € N, which is also not possible. Thus our assumption
that M ¢ N and N ¢ M is incorrect, so if M U N is an ideal, either M C N or
NCM.

Question 2(b) 1. Show that Q(v/3,14) is the splitting field for x° — 32° + 2% — 3 where Q

is the field of rational numbers.

2. Prove that x* 4+ x + 4 is irreducible over F, the field of integers modulo 11 and prove
further that Flx]/{z* + x + 4) is a field with 121 elements.
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Solution.

1 2° =3 +2?2 -3 =23(2?-3)+22 -3 =(22-3)(2*+1) = (2 = 3)(z+ 1) (2® —x + 1).
Thus the roots of #° — 323 + 22 — 3 are —1, £/3, #ﬁ Consequently all the roots of
the given polynomial lie in the field Q(v/3,7). Conversely, if K is any field containing
Q, which contains the roots of the given polynomial, then v/3 € K, and therefore
i € K, thus Q(v/3,4) € K. Thus Q(v/3,1) is the smallest field containing all the roots
of 2% — 32 + 2% — 3. Thus Q(+/3,4) is the splitting field of the given polynomial over
Q.

2. See question 2(c) from 1996 for the irreducibility of x* + = + 4 over F.
See question 2(b) from 1992 for the second part.

Question 2(c) If R is a unique factorization domain (UFD), then prove that R[z| is also
a UFD.

Solution. Let F' denote the field of quotients of R.

Result 1. If f(x) € R[z] is irreducible, then f(z) remains irreducible in F[z]. (Note that
the converse is obvious as R[z] C Flz].) Let f(x) be reducible in F[z] i.e. f(z) = g(x)h(z),
where deg g(z) < deg f(z),degh(z) < deg f(x) and g(x), h(z) € F|x]. We can write g(x) =
a1b; g1 (z), h(x) = asby 'hy(x), where g1 (), hi(z) € R[x] and are primitive and ay, by, ag, by €
R (by is the LCM of all the denominators of g(x), and a; is the GCD of the numerators). Thus
biby f(x) = a1azgi(x)hi(x). But by Gauss Lemma, the product of two primitive polynomials
is primitive, therefore g;(z)hi(z) is primitive. Since f(z) is irreducible in R[z], therefore it
is also primitive. Consequently b;by = content of byb, f(z) = ajas = content of ajasg(z)h(z)
and therefore we get f(x) = g1(z)hi(x), thus f(x) is reducible in R[z]. Hence if f(z) is
irreducible in R[z] then it is irreducible in Fx].

Result2. Factorization exists in R[z|. Let f(x) € Rx], f(z) # 0 and f(x) not a unit.
Let a = ¢(f) = content of f then f = af* where f* is a primitive polynomial in R[z] of the
same degree as f. Since F[z] is a UFD (being a Euclidean domain), we can write f*(x) =
pi(x) ... p.(x), where each p;(z) is an irreducible element of Flx]. Let p;(z) = a:b; 'q:(x),
where a;,b; € R, and ¢;(z) € R[x] is a primitive polynomial. Thus we get

by...b.f"(z)=ay...a,q1(x)...q(2)

But the product ¢;(z)...¢.(z) is again primitive (Gauss Lemma), therefore equating the
contents of both sides (note that f*(z) is primitive), we get by ...b, = a; ...a,, therefore

fH(x) =q(r)... q(x)

where each ¢;(z) € R[z] and is irreducible in F[z] and therefore irreducible in R[z|. Since R
is a UFD, a = 7y ... m, where 7y, ..., m are irreducible in R. Thus

flz)=m...mq(x)...q ()
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where 71, ..., m, q1(x), ..., q.(z) are irreducible elements of R[z]. Note that 7y, ..., m; being
constants cannot have a proper factorization in R[z] if they do not have one in R. Hence
the result is established.
Result 3. Uniqueness. If possible, let
m.omq (). g () =7 mgi () .. gs()

where 7y, ..., m, 7, . .., m, are irreducible elements in R and ¢;(x) . .. ¢-(), g1(z) ... gs(x) are
irreducible elements of R[z|. Using Gauss Lemma, we get that the products ¢;(z) ... ¢.(x),
g1(x)...gs(x) are primitive. Comparing the contents of both sides, we get m...m =
7 ...m,. But Ris a UFD, so t = u, and we can reorder the 7, to ensure that each ;
is an associate of 7[. Thus we are left with ¢;(z)...¢.(z) = g1(x) ... gs(x). We consider this
equation in F[z]. By the first result each ¢;,g;,1 < i <r, 1 < j < s is irreducible in F[z].
Since Flz] is a UFD, we get » = s and by reordering, we get that ¢;(x) is an associate of
gi(z) in Flz]. We can assume w.l.o.g. that ¢;(z) = (unit in Flx])g;(x),1 < i < r. Since
units in F[z] are non-zero constants, these are of the form cd~! where ¢,d € R. Thus we
get d;q;(x) = ¢;9;(x). Using contents, we conclude that d; = ¢;, thus ¢;(x) is an associate of
gi(z) in Rx], so the factorization is unique.

Thus Rz] is a UFD. [



