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Question 1(a) If M and N are normal subgroups of a group G such that M NN = {e},
show that every element of M commutes with every element of N.

Solution. Let x € M,y € N. We consider the element o« = zyz~'y~'. Now 27! € M
and y € N C G, and M is a normal subgroup of G, therefore yz~'y~' € M, consequently
a € M. Similarly since N is a normal subgroup of G and y € N, zyz~! € N, hence
a=zyr ty~' € N. Thus « € M N N, which means that o = zyz~ly ™' =e = 2y = yz i.e.
every element of M commutes with every element of N. | |

Question 1(b) Show that (1 + i) is a prime element in the ring R of Gaussian integers.

Solution. The ring of Gaussian integers is a Euclidean domain with Euclidean function
N(a + ib) = a® + b*, therefore any two elements o, 3 € R have a GCD (greatest common
divisor). If d is the GCD of «, 3, then there exist v, € R such that ay + 36 = d. Moreover
a is a unit in R if and only if N(«a) = 1, because if N(«) = 1 then a@ = 1, implying that
« is a unit, and conversely, if « is a unit, then there exist § € R such that a8 = 1, and
therefore N(af) = N(a)N(8) =1 = N(a) = N(5) =1 as both are positive integers.

First of all we prove that 1 + i is an irreducible element (note that it is not a unit as
N(1+14) =2). Let 1 +1i = af. Taking norm of both sides, we get N(af) = N(a)N(5) =
2= N(a)=1or N(B) =1, so either « is a unit or [ is a unit. Thus 1 + ¢ is an irreducible
element.

Let 1+ ¢ divide a8 and assume that 1 + ¢ does not divide ae. We shall show that 1 4 ¢
divides (. Since the only divisors of 1+ ¢ are 1+ ¢ and units, and 1 + ¢ does not divide «, it
follows that GCD of a and 1+ is 1. Thus there exists 7,6 € R such that y(1+i) +da =1
or Y4(1 + i) + daf = (. Since (1 + i) divides the left hand side of this equation, it follows
that 1 4+ ¢ divides 3. Hence 1 + i is a prime element in R. |



Question 2(a) 1. Let H and K be two subgroups of a finite group G, such that |H| >
V|G| and |K| > +/|G|. Prove that H N K # {e}.

2. If f: G — G is an isomorphism, prove that the order of a € G is equal to the order

of f(a).
Solution.

1. We prove that |[HK| = %
If HN K = {e}, then hk = hiky < hi'h = kik™' & hi'h,kk ' €c HNK < hi'h =
kik™' = e & h = hy,k = k. Thus there are no repetitions in HK = {hk | h €
H, ke K},s0 |HK| = |H||K| = % (This is sufficient to prove the result, but for
completeness we show the result when H N K # {e}.)
If HN K # {e}, then hk = hik; < hi'hkik' €¢ HNK < hi'h = kik™' =u €
HNK < h=huk=u"'k withu € HN K. Thus hk is duplicated at least |H N K|
times as hk = (hu)(u™'k) with w € HNK. Tt is duplicated no more than |H N K| times,

because hk = hiky = h = hyu,k = u 'k with w € H N K. Hence |[HK| = \‘ff'rlf\-

GG

Now [G] > [HK| = B8 > YOV g |10 K| > 1, 50 [H N K| £ {e).

2. Let o(a) = order of a = m and order of f(a) = o(f(a)) =n. Then e = f(a™) = f(a)™
where ¢’ is the identity of G’, showing that n divides m. Conversely, f(e) = €
f(a)" = f(a") = a™ = e as f is one-one. This means that m divides n. Thus m = n,
which was to be proved.

Question 2(b) Prove that any polynomial ring F|x] over a field F is a UFD.

Solution. We know that F[z] is a Euclidean domain with the Euclidean function being
the degree of the polynomial — the algorithm being: given f(z),g(z) # 0 belonging to
F[z], there exist ¢(z),r(x) € Flz] such that f(x) = ¢(x)g(x) + r(x) where r(z) = 0 or
degr(x) < degg(x).

Step 1. If f(x),g(x) € F[z], both not 0, then they have a GCD d(z), and there exist
A@),1(x) € Flz] such that d(x) = f(x)A(x) + g(a)u(z). Let § = {f(x)alz) + g(z)b(zx) |
a(z),b(x) € Flx]}. Then S # 0, as f(z),g(x) € S. Let d(z) be a non-zero polynomial is S
with minimal degree, i.e. degd(x) < deg h(x) for every nonzero h(z) € S. Clearly if any d'(x)
divides f(x) and g(z), then d'(z) divides d(x) because d(x) is of the form f(z)a(x)+g(z)b(x).
Moreover d(x) divides both f(z) and g(x), otherwise we have ¢(z),r(x) € F[z] such that
f(z) = d(x)q(z)+r(x) where deg r(x) < degd(x), but this is not possible as r(z) € S as it is
of the form f(x)a(x) + g(x)b(x) so degr(z) > degd(x). So d(z) divides f(z), and similarly
d(z) divides g(x).



Step 2. An irreducible element of F[z] is a prime element i.e. if f(z) is irreducible and
f(@) [ g(x)h(x) and f(z) { g(x) then f(z) | h(z).

If f(x)tg(x), then f(x) is irreducible implies its only divisors are units or associates of
f(z). Therefore the GCD of f(x) and g(x) is 1. By Step 1, we have 1 = f(z)a(z) + g(z)b(x)
for some a(x),b(x) € Flz]. Thus h(z) = h(x)f(z)a(x) + h(x)g(x)b(z). Clearly f(z) divides
the right hand side, so f(z) | h(x), as required.

Step 3. Every non-zero non-unit element in F[x] can be written as the product of
irreducible elements in F[z].

The proof is by induction on the degree of f(x). If deg f(x) = 0, then f(x) is a non-zero
constant, therefore a unit in F'[z], so we have nothing to prove.

Let the result be true for all polynomials whose degree is < deg f(x). If f(z) is irre-
ducible, we have nothing to prove. If f(z) is not irreducible, then there exist g(x),h(x),
1 < degg(z),degh(z) < deg f(x) such that g(z)h(xz) = f(x). Now by induction both g(z)
and h(z) are products of irreducible elements, therefore f(z) is the product of irreducible
elements.

Step 4: Uniqueness. If possible let

where fi,..., fr,91,...,9s are irreducible, and ¢,d € F. We will show that » = s and that
the g;’s can be reordered such that each f; is the associate of g;.

Now f1(z) divides g1 () . . . gs(x), therefore by step 2, fi(z) must divide one of g (z), ..., gs(z).
Let us assume without loss of generality that fi(x) | g1(x), but g;(z) is also irreducible and
fi(x) is not a unit, therefore fi(x) and g;(x) are associates. Thus we get

dfa(x). .. folx) =dgo(x) ... gs(x)

If » < s, then after r steps we shall get g,41(z)...gs(x) = 1, which is not possible, hence
r > s, similarly s > r so r = s. Now by relabelling g, . .., g, we get each f;(x) is an associate
of gi(x),1 <1 <r. Hence Flz| is a UFD. [



