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Question 1(a) If M and N are normal subgroups of a group G such that M ∩ N = {e},
show that every element of M commutes with every element of N .

Solution. Let x ∈ M, y ∈ N . We consider the element α = xyx−1y−1. Now x−1 ∈ M
and y ∈ N ⊆ G, and M is a normal subgroup of G, therefore yx−1y−1 ∈ M , consequently
α ∈ M . Similarly since N is a normal subgroup of G and y ∈ N , xyx−1 ∈ N , hence
α = xyx−1y−1 ∈ N . Thus α ∈M ∩N , which means that α = xyx−1y−1 = e⇒ xy = yx i.e.
every element of M commutes with every element of N .

Question 1(b) Show that (1 + i) is a prime element in the ring R of Gaussian integers.

Solution. The ring of Gaussian integers is a Euclidean domain with Euclidean function
N(a + ib) = a2 + b2, therefore any two elements α, β ∈ R have a GCD (greatest common
divisor). If d is the GCD of α, β, then there exist γ, δ ∈ R such that αγ + βδ = d. Moreover
α is a unit in R if and only if N(α) = 1, because if N(α) = 1 then αα = 1, implying that
α is a unit, and conversely, if α is a unit, then there exist β ∈ R such that αβ = 1, and
therefore N(αβ) = N(α)N(β) = 1⇒ N(α) = N(β) = 1 as both are positive integers.

First of all we prove that 1 + i is an irreducible element (note that it is not a unit as
N(1 + i) = 2). Let 1 + i = αβ. Taking norm of both sides, we get N(αβ) = N(α)N(β) =
2⇒ N(α) = 1 or N(β) = 1, so either α is a unit or β is a unit. Thus 1 + i is an irreducible
element.

Let 1 + i divide αβ and assume that 1 + i does not divide α. We shall show that 1 + i
divides β. Since the only divisors of 1 + i are 1 + i and units, and 1 + i does not divide α, it
follows that GCD of α and 1 + i is 1. Thus there exists γ, δ ∈ R such that γ(1 + i) + δα = 1
or γβ(1 + i) + δαβ = β. Since (1 + i) divides the left hand side of this equation, it follows
that 1 + i divides β. Hence 1 + i is a prime element in R.
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Question 2(a) 1. Let H and K be two subgroups of a finite group G, such that |H| >√
|G| and |K| >

√
|G|. Prove that H ∩K 6= {e}.

2. If f : G −→ G′ is an isomorphism, prove that the order of a ∈ G is equal to the order
of f(a).

Solution.

1. We prove that |HK| = |H||K|
|H∩K| .

If H ∩K = {e}, then hk = h1k1 ⇔ h−1
1 h = k1k

−1 ⇔ h−1
1 h, k1k

−1 ∈ H ∩K ⇔ h−1
1 h =

k1k
−1 = e ⇔ h = h1, k = k1. Thus there are no repetitions in HK = {hk | h ∈

H, k ∈ K}, so |HK| = |H||K| = |H||K|
|H∩K| . (This is sufficient to prove the result, but for

completeness we show the result when H ∩K 6= {e}.)
If H ∩ K 6= {e}, then hk = h1k1 ⇔ h−1

1 h, k1k
−1 ∈ H ∩ K ⇔ h−1

1 h = k1k
−1 = u ∈

H ∩K ⇔ h = h1u, k = u−1k1 with u ∈ H ∩K. Thus hk is duplicated at least |H ∩K|
times as hk = (hu)(u−1k) with u ∈ H∩K. It is duplicated no more than |H∩K| times,

because hk = h1k1 ⇒ h = h1u, k = u−1k1 with u ∈ H ∩K. Hence |HK| = |H||K|
|H∩K| .

Now |G| ≥ |HK| = |H||K|
|H∩K| ≥

√
|G|
√
|G|

|H∩K| Thus |H ∩K| > 1, so |H ∩K| 6= {e}.

2. Let o(a) = order of a = m and order of f(a) = o(f(a)) = n. Then e′ = f(am) = f(a)m,
where e′ is the identity of G′, showing that n divides m. Conversely, f(e) = e′ =
f(a)n = f(an)⇒ an = e as f is one-one. This means that m divides n. Thus m = n,
which was to be proved.

Question 2(b) Prove that any polynomial ring F [x] over a field F is a UFD.

Solution. We know that F [x] is a Euclidean domain with the Euclidean function being
the degree of the polynomial — the algorithm being: given f(x), g(x) 6= 0 belonging to
F [x], there exist q(x), r(x) ∈ F [x] such that f(x) = q(x)g(x) + r(x) where r(x) = 0 or
deg r(x) < deg g(x).

Step 1. If f(x), g(x) ∈ F [x], both not 0, then they have a GCD d(x), and there exist
λ(x), µ(x) ∈ F [x] such that d(x) = f(x)λ(x) + g(x)µ(x). Let S = {f(x)a(x) + g(x)b(x) |
a(x), b(x) ∈ F [x]}. Then S 6= ∅, as f(x), g(x) ∈ S. Let d(x) be a non-zero polynomial is S
with minimal degree, i.e. deg d(x) ≤ deg h(x) for every nonzero h(x) ∈ S. Clearly if any d′(x)
divides f(x) and g(x), then d′(x) divides d(x) because d(x) is of the form f(x)a(x)+g(x)b(x).
Moreover d(x) divides both f(x) and g(x), otherwise we have q(x), r(x) ∈ F [x] such that
f(x) = d(x)q(x)+r(x) where deg r(x) < deg d(x), but this is not possible as r(x) ∈ S as it is
of the form f(x)a(x) + g(x)b(x) so deg r(x) ≥ deg d(x). So d(x) divides f(x), and similarly
d(x) divides g(x).
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Step 2. An irreducible element of F [x] is a prime element i.e. if f(x) is irreducible and
f(x) | g(x)h(x) and f(x) - g(x) then f(x) | h(x).

If f(x) - g(x), then f(x) is irreducible implies its only divisors are units or associates of
f(x). Therefore the GCD of f(x) and g(x) is 1. By Step 1, we have 1 = f(x)a(x) + g(x)b(x)
for some a(x), b(x) ∈ F [x]. Thus h(x) = h(x)f(x)a(x) + h(x)g(x)b(x). Clearly f(x) divides
the right hand side, so f(x) | h(x), as required.

Step 3. Every non-zero non-unit element in F [x] can be written as the product of
irreducible elements in F [x].

The proof is by induction on the degree of f(x). If deg f(x) = 0, then f(x) is a non-zero
constant, therefore a unit in F [x], so we have nothing to prove.

Let the result be true for all polynomials whose degree is < deg f(x). If f(x) is irre-
ducible, we have nothing to prove. If f(x) is not irreducible, then there exist g(x), h(x),
1 ≤ deg g(x), deg h(x) < deg f(x) such that g(x)h(x) = f(x). Now by induction both g(x)
and h(x) are products of irreducible elements, therefore f(x) is the product of irreducible
elements.

Step 4: Uniqueness. If possible let

f(x) = cf1(x) . . . fr(x) = dg1(x) . . . gs(x)

where f1, . . . , fr, g1, . . . , gs are irreducible, and c, d ∈ F . We will show that r = s and that
the gi’s can be reordered such that each fi is the associate of gi.

Now f1(x) divides g1(x) . . . gs(x), therefore by step 2, f1(x) must divide one of g1(x), . . . , gs(x).
Let us assume without loss of generality that f1(x) | g1(x), but g1(x) is also irreducible and
f1(x) is not a unit, therefore f1(x) and g1(x) are associates. Thus we get

c′f2(x) . . . fr(x) = d′g2(x) . . . gs(x)

If r < s, then after r steps we shall get gr+1(x) . . . gs(x) = 1, which is not possible, hence
r ≥ s, similarly s ≥ r so r = s. Now by relabelling g1, . . . , gr we get each fi(x) is an associate
of gi(x), 1 ≤ i ≤ r. Hence F [x] is a UFD.
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