UPSC Civil Services Main 2005 - Mathematics Algebra

Sunder Lal

Retired Professor of Mathematics Panjab University Chandigarh

December 16, 2007

Question 1(a) If M and N are normal subgroups of a group G such that $M \cap N = \{e\}$, show that every element of M commutes with every element of N.

Solution. Let $x \in M, y \in N$. We consider the element $\alpha = xyx^{-1}y^{-1}$. Now $x^{-1} \in M$ and $y \in N \subseteq G$, and M is a normal subgroup of G, therefore $yx^{-1}y^{-1} \in M$, consequently $\alpha \in M$. Similarly since N is a normal subgroup of G and $y \in N$, $xyx^{-1} \in N$, hence $\alpha = xyx^{-1}y^{-1} \in N$. Thus $\alpha \in M \cap N$, which means that $\alpha = xyx^{-1}y^{-1} = e \Rightarrow xy = yx$ i.e. every element of M commutes with every element of N.

Question 1(b) Show that (1 + i) is a prime element in the ring R of Gaussian integers.

Solution. The ring of Gaussian integers is a Euclidean domain with Euclidean function $N(a + ib) = a^2 + b^2$, therefore any two elements $\alpha, \beta \in R$ have a GCD (greatest common divisor). If d is the GCD of α, β , then there exist $\gamma, \delta \in R$ such that $\alpha\gamma + \beta\delta = d$. Moreover α is a unit in R if and only if $N(\alpha) = 1$, because if $N(\alpha) = 1$ then $\alpha\overline{\alpha} = 1$, implying that α is a unit, and conversely, if α is a unit, then there exist $\beta \in R$ such that $\alpha\beta = 1$, and therefore $N(\alpha\beta) = N(\alpha)N(\beta) = 1 \Rightarrow N(\alpha) = N(\beta) = 1$ as both are positive integers.

First of all we prove that 1 + i is an irreducible element (note that it is not a unit as N(1+i) = 2). Let $1 + i = \alpha\beta$. Taking norm of both sides, we get $N(\alpha\beta) = N(\alpha)N(\beta) = 2 \Rightarrow N(\alpha) = 1$ or $N(\beta) = 1$, so either α is a unit or β is a unit. Thus 1 + i is an irreducible element.

Let 1 + i divide $\alpha\beta$ and assume that 1 + i does not divide α . We shall show that 1 + i divides β . Since the only divisors of 1 + i are 1 + i and units, and 1 + i does not divide α , it follows that GCD of α and 1 + i is 1. Thus there exists $\gamma, \delta \in R$ such that $\gamma(1 + i) + \delta\alpha = 1$ or $\gamma\beta(1 + i) + \delta\alpha\beta = \beta$. Since (1 + i) divides the left hand side of this equation, it follows that 1 + i divides β . Hence 1 + i is a prime element in R.

- Question 2(a) 1. Let H and K be two subgroups of a finite group G, such that $|H| > \sqrt{|G|}$ and $|K| > \sqrt{|G|}$. Prove that $H \cap K \neq \{e\}$.
 - 2. If $f: G \longrightarrow G'$ is an isomorphism, prove that the order of $a \in G$ is equal to the order of f(a).

Solution.

1. We prove that $|HK| = \frac{|H||K|}{|H \cap K|}$.

If $H \cap K = \{e\}$, then $hk = h_1k_1 \Leftrightarrow h_1^{-1}h = k_1k^{-1} \Leftrightarrow h_1^{-1}h, k_1k^{-1} \in H \cap K \Leftrightarrow h_1^{-1}h = k_1k^{-1} = e \Leftrightarrow h = h_1, k = k_1$. Thus there are no repetitions in $HK = \{hk \mid h \in H, k \in K\}$, so $|HK| = |H||K| = \frac{|H||K|}{|H \cap K|}$. (This is sufficient to prove the result, but for completeness we show the result when $H \cap K \neq \{e\}$.)

If $H \cap K \neq \{e\}$, then $hk = h_1k_1 \Leftrightarrow h_1^{-1}h, k_1k^{-1} \in H \cap K \Leftrightarrow h_1^{-1}h = k_1k^{-1} = u \in H \cap K \Leftrightarrow h = h_1u, k = u^{-1}k_1$ with $u \in H \cap K$. Thus hk is duplicated at least $|H \cap K|$ times as $hk = (hu)(u^{-1}k)$ with $u \in H \cap K$. It is duplicated no more than $|H \cap K|$ times, because $hk = h_1k_1 \Rightarrow h = h_1u, k = u^{-1}k_1$ with $u \in H \cap K$. Hence $|HK| = \frac{|H||K|}{|H \cap K|}$.

Now $|G| \ge |HK| = \frac{|H||K|}{|H \cap K|} \ge \frac{\sqrt{|G|}\sqrt{|G|}}{|H \cap K|}$ Thus $|H \cap K| > 1$, so $|H \cap K| \ne \{e\}$.

2. Let o(a) = order of a = m and order of f(a) = o(f(a)) = n. Then $e' = f(a^m) = f(a)^m$, where e' is the identity of G', showing that n divides m. Conversely, $f(e) = e' = f(a)^n = f(a^n) \Rightarrow a^n = e$ as f is one-one. This means that m divides n. Thus m = n, which was to be proved.

Question 2(b) Prove that any polynomial ring F[x] over a field F is a UFD.

Solution. We know that F[x] is a Euclidean domain with the Euclidean function being the degree of the polynomial — the algorithm being: given $f(x), g(x) \neq 0$ belonging to F[x], there exist $q(x), r(x) \in F[x]$ such that f(x) = q(x)g(x) + r(x) where r(x) = 0 or $\deg r(x) < \deg g(x)$.

Step 1. If $f(x), g(x) \in F[x]$, both not 0, then they have a GCD d(x), and there exist $\lambda(x), \mu(x) \in F[x]$ such that $d(x) = f(x)\lambda(x) + g(x)\mu(x)$. Let $S = \{f(x)a(x) + g(x)b(x) \mid a(x), b(x) \in F[x]\}$. Then $S \neq \emptyset$, as $f(x), g(x) \in S$. Let d(x) be a non-zero polynomial is S with minimal degree, i.e. $\deg d(x) \leq \deg h(x)$ for every nonzero $h(x) \in S$. Clearly if any d'(x) divides f(x) and g(x), then d'(x) divides d(x) because d(x) is of the form f(x)a(x)+g(x)b(x). Moreover d(x) divides both f(x) and g(x), otherwise we have $q(x), r(x) \in F[x]$ such that f(x) = d(x)q(x) + r(x) where $\deg r(x) < \deg d(x)$, but this is not possible as $r(x) \in S$ as it is of the form f(x)a(x) + g(x)b(x) so $\deg r(x) \geq \deg d(x)$. So d(x) divides f(x), and similarly d(x) divides g(x).

Step 2. An irreducible element of F[x] is a prime element i.e. if f(x) is irreducible and $f(x) \mid g(x)h(x)$ and $f(x) \nmid g(x)$ then $f(x) \mid h(x)$.

If $f(x) \nmid g(x)$, then f(x) is irreducible implies its only divisors are units or associates of f(x). Therefore the GCD of f(x) and g(x) is 1. By Step 1, we have 1 = f(x)a(x) + g(x)b(x) for some $a(x), b(x) \in F[x]$. Thus h(x) = h(x)f(x)a(x) + h(x)g(x)b(x). Clearly f(x) divides the right hand side, so $f(x) \mid h(x)$, as required.

Step 3. Every non-zero non-unit element in F[x] can be written as the product of irreducible elements in F[x].

The proof is by induction on the degree of f(x). If deg f(x) = 0, then f(x) is a non-zero constant, therefore a unit in F[x], so we have nothing to prove.

Let the result be true for all polynomials whose degree is $\langle \deg f(x) \rangle$. If f(x) is irreducible, we have nothing to prove. If f(x) is not irreducible, then there exist g(x), h(x), $1 \leq \deg g(x), \deg h(x) < \deg f(x)$ such that g(x)h(x) = f(x). Now by induction both g(x) and h(x) are products of irreducible elements, therefore f(x) is the product of irreducible elements.

Step 4: Uniqueness. If possible let

$$f(x) = cf_1(x) \dots f_r(x) = dg_1(x) \dots g_s(x)$$

where $f_1, \ldots, f_r, g_1, \ldots, g_s$ are irreducible, and $c, d \in F$. We will show that r = s and that the g_i 's can be reordered such that each f_i is the associate of g_i .

Now $f_1(x)$ divides $g_1(x) \ldots g_s(x)$, therefore by step 2, $f_1(x)$ must divide one of $g_1(x), \ldots, g_s(x)$. Let us assume without loss of generality that $f_1(x) | g_1(x)$, but $g_1(x)$ is also irreducible and $f_1(x)$ is not a unit, therefore $f_1(x)$ and $g_1(x)$ are associates. Thus we get

$$c'f_2(x)\ldots f_r(x) = d'g_2(x)\ldots g_s(x)$$

If r < s, then after r steps we shall get $g_{r+1}(x) \dots g_s(x) = 1$, which is not possible, hence $r \ge s$, similarly $s \ge r$ so r = s. Now by relabelling g_1, \dots, g_r we get each $f_i(x)$ is an associate of $g_i(x), 1 \le i \le r$. Hence F[x] is a UFD.