UPSC Civil Services Main 1988 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

December 16, 2007

Question 1(a) Show that a linear transformation of a vector space \mathcal{V}_{m} of dimension m into a vector space \mathcal{V}_{n} of dimension n over the same field can be represented as a matrix. If \mathbf{T} is a linear transformation of \mathcal{V}_{2} into \mathcal{V}_{4} such that $\mathbf{T}(3,1)=(4,1,2,1)$ and $\mathbf{T}(-1,2)=$ $(3,0,-2,1)$, then find the matrix of \mathbf{T}.

Solution. Let $\mathbf{v}_{\mathbf{i}}, i=1, \ldots, m$ be a basis of \mathcal{V}_{m} and $\mathbf{w}_{\mathbf{j}}, j=1, \ldots, n$ be a basis of \mathcal{V}_{n}. If

$$
\mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\sum_{j=1}^{n} a_{j i} \mathbf{w}_{\mathbf{j}}, \quad i=1, \ldots, m
$$

then \mathbf{T} corresponds to the $n \times m$ matrix \mathbf{A} whose $(i, j)^{\prime}$ th entry is $a_{i j}$. In fact $\left(\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)=$ $\left(\mathbf{w}_{1}, \ldots, w_{\mathbf{n}}\right) \mathbf{A}$.

It can be easily seen that

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0)=\frac{2}{7}(3,1)-\frac{1}{7}(-1,2) \\
& \mathbf{e}_{\mathbf{2}}=(0,1)=\frac{1}{7}(3,1)+\frac{3}{7}(-1,2)
\end{aligned}
$$

and therefore

Thus \mathbf{T} corresponds to the matrix $\frac{1}{7}\left(\begin{array}{cc}5 & 13 \\ 2 & 1 \\ 6 & -4 \\ 7 & 4\end{array}\right)$ w.r.t. the standard basis.

Question $\mathbf{1 (b)}$ If \mathcal{M}, \mathcal{N} are finite dimensional subspaces of \mathcal{V}, then show that $\operatorname{dim}(\mathcal{M}+$ $\mathcal{N})=\operatorname{dim} \mathcal{M}+\operatorname{dim} \mathcal{N}-\operatorname{dim}(\mathcal{M} \cap \mathcal{N})$.

Solution. Let $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}\right\}$ be a basis of $\mathcal{M} \cap \mathcal{N}$ where $\operatorname{dim}(\mathcal{M} \cap \mathcal{N})=r$. Complete $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}\right\}$ to a basis $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ of \mathcal{M}, where $\operatorname{dim} \mathcal{M}=m+r$. Complete $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}\right\}$ to a basis $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}, \mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ of \mathcal{N}, where $\operatorname{dim} \mathcal{N}=n+r$. We shall show that $\mathscr{\mathscr { P }}=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\}$ is a basis of $\mathcal{M}+\mathcal{N}$, proving the result.

If $\mathbf{u} \in \mathcal{M}+\mathcal{N}$, then $\mathbf{u}=\mathbf{v}+\mathbf{w}$ for some $\mathbf{v} \in \mathcal{M}, \mathbf{w} \in \mathcal{N}$. Since $\mathscr{\mathscr { B }}$ is a superset of the bases of $\mathcal{M}, \mathcal{N}, \mathbf{v}, \mathbf{w}$ can be written as linear combination of elements of $\mathscr{\mathscr { P }} \Rightarrow \mathbf{u}$ can be written as a linear combination of elements of $\mathscr{\mathscr { R }}$. Thus $\mathscr{\mathscr { P }}$ generates $\mathcal{M}+\mathcal{N}$.

We now show that the set $\mathscr{\mathscr { P }}$ is linearly independent. If possible let

$$
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}+\sum_{i=1}^{m} \beta_{i} \mathbf{w}_{\mathbf{i}}+\sum_{i=1}^{r} \gamma_{i} \mathbf{u}_{\mathbf{i}}=\mathbf{0}
$$

Since $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}=-\sum_{i=1}^{m} \beta_{i} \mathbf{w}_{\mathbf{i}}-\sum_{i=1}^{r} \gamma_{i} \mathbf{u}_{\mathbf{i}}$ it follows that $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}} \in \mathcal{N}$. Therefore $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}} \in \mathcal{M} \cap \mathcal{N} \Rightarrow \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}=\sum_{i=1}^{r} \eta_{i} \mathbf{u}_{\mathbf{i}}$ for $\eta_{i} \in \mathbb{R}$. This means that $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}-$ $\sum_{i=1}^{r} \eta_{i} \mathbf{u}_{\mathbf{i}}=0$. But $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}, \mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ are linearly independent, so $\alpha_{i}=0,1 \leq$ $i \leq n$. Similarly we can show that $\beta_{i}=0,1 \leq i \leq m$. Then the linear independence of $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{r}}\right\}$ shows that $\gamma_{i}=0,1 \leq i \leq r$. Thus the vectors in \mathscr{P} are linearly independent and form a basis of $\mathcal{M}+\mathcal{N}$, showing that the dimension of $\mathcal{M}+\mathcal{N}$ is $m+n+r=(m+r)+(n+r)-r$, which completes the proof.

Question $\mathbf{1 (c)}$ Determine a basis of the subspace spanned by the vectors $\mathbf{v}_{\mathbf{1}}=(1,2,3), \mathbf{v}_{\mathbf{2}}=$ $(2,1,-1), \mathbf{v}_{\mathbf{3}}=(1,-1,-4), \mathbf{v}_{\mathbf{4}}=(4,2,-2)$.

Solution. $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ are linearly independent because if $\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}=\mathbf{0}$ then $\alpha+2 \beta=$ $0,2 \alpha+\beta=0,3 \alpha-\beta=0 \Rightarrow \alpha=\beta=0$. If $\mathbf{v}_{\mathbf{3}}=\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}$, then the three linear equations $\alpha+2 \beta=1,2 \alpha+\beta=-1,3 \alpha-\beta=-4$ should be consistent - clearly $\alpha=-1, \beta=1$ satisfy all three, showing $\mathbf{v}_{\mathbf{3}}=\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{1}}$. Again suppose $\mathbf{v}_{\mathbf{4}}=\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}$, then the three linear equations $\alpha+2 \beta=4,2 \alpha+\beta=2,3 \alpha-\beta=-2$ should be consistent - clearly $\alpha=0, \beta=2$ satisfy all three, showing $\mathbf{v}_{\mathbf{4}}=2 \mathbf{v}_{\mathbf{2}}$.

Hence $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ is a basis for the vector space generated by $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$.
Question 2(a) Show that it is impossible for $\mathbf{S}=\left(\begin{array}{cc}a_{1} & b \\ b & a_{2}\end{array}\right), b \neq 0$ to have identical eigenvalues.
Solution. We know given \mathbf{S} symmetric $\exists \mathbf{O}$ orthogonal so that $\mathbf{O}^{\prime} \mathbf{S O}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, where λ_{1}, λ_{2} are eigenvalues of \mathbf{S}. If $\lambda_{1}=\lambda_{2}$, then we have $\mathbf{S}=\mathbf{O}^{\prime-1}(\lambda \mathbf{I}) \mathbf{O}^{-1}=\lambda\left(\mathbf{O O}^{\prime}\right)^{-1}=\lambda \mathbf{I} \Rightarrow$ $\mathbf{S}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$. Thus if $b \neq 0, \mathbf{S}$ cannot have identical eigenvalues.

Question 2(b) Prove that the eigenvalues of a Hermitian matrix are all real and the eigenvalues of a skew-Hermitian matrix are either zero or pure imaginary.

Solution. See question 2(a), year 1998.
Question 2(c) If $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$, A symmetric, then for all $\mathbf{y} \neq \mathbf{0} \mathbf{y}^{\prime} \mathbf{A}^{-1} \mathbf{y}>0$. If λ is the largest eigenvalue of \mathbf{A}, then

$$
\lambda=\sup _{\substack{\mathbf{x} \in \mathbb{R}^{n} \\ \mathbf{x} \neq 0}} \frac{\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\prime} \mathbf{x}}
$$

Solution. Clearly $\mathbf{A}=\mathbf{A}^{\prime} \mathbf{A}^{-1} \mathbf{A} \therefore \mathbf{x}^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A}^{-1} \mathbf{A x}=\mathbf{y}^{\prime} \mathbf{A}^{-1} \mathbf{y}$ where $\mathbf{y}=\mathbf{A x}$ for any $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$. Since $|\mathbf{A}| \neq 0$, any vector \mathbf{y} can be written as $\mathbf{A x}$, by taking $\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$. Thus $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}>0 \Rightarrow \mathbf{y}^{\prime} \mathbf{A}^{-1} \mathbf{y}>0$ for all $\mathbf{y} \neq \mathbf{0}$.

$$
\text { Let } M=\sup _{\substack{\mathbf{x} \in \mathbb{R}^{n} \neq 0}} \frac{\mathbf{x}^{\prime} \mathbf{A x}}{\mathbf{x}^{\prime} \mathbf{x}} \text {. Let } \mathbf{O} \text { be an orthogonal matrix such that } \mathbf{O}^{\prime} \mathbf{A O}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) \text {. }
$$

Let $\mathbf{0} \neq \mathbf{x}=\mathbf{O} \mathbf{y}$, then $\mathbf{x}^{\prime} \mathbf{x}=\mathbf{y}^{\prime} \mathbf{O}^{\prime} \mathbf{O} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{y}$. Now $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\mathbf{y}^{\prime} \mathbf{O}^{\prime} \mathbf{A O} \mathbf{y}=\sum_{i} \lambda_{i} y_{i}^{2} \leq \lambda \mathbf{y}^{\prime} \mathbf{y}$ where λ is the largest eigenvalue of \mathbf{A}. Thus $\lambda \geq \frac{\mathbf{x}^{\prime} \mathbf{A x}}{\mathbf{y}^{\prime} \mathbf{y}}=\frac{\mathbf{x}^{\prime} \mathbf{A x}}{\mathbf{x}^{\prime} \mathbf{x}}$, so $\lambda \geq M$. On the other hand, if $\mathbf{x} \neq \mathbf{0}$ is an eigenvector corresponding to λ, then $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\lambda \mathbf{x}^{\prime} \mathbf{x} \Rightarrow \lambda=\frac{\mathbf{x}^{\prime} \mathbf{A x}}{\mathbf{x}^{\prime} \mathbf{x}} \leq M$. Thus $\lambda=M$ as required.

Question 3(a) By converting A to an echelon matrix, determine its rank, where

$$
\left(\begin{array}{llllll}
0 & 0 & 1 & 2 & 8 & 9 \\
0 & 0 & 4 & 6 & 5 & 3 \\
0 & 2 & 3 & 1 & 4 & 7 \\
0 & 3 & 0 & 9 & 3 & 7 \\
0 & 0 & 5 & 7 & 3 & 1
\end{array}\right)
$$

Solution. Consider

$$
\mathbf{A}^{\prime}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 3 & 0 \\
1 & 4 & 3 & 0 & 5 \\
2 & 6 & 1 & 9 & 7 \\
8 & 5 & 4 & 3 & 3 \\
9 & 3 & 7 & 7 & 1
\end{array}\right)
$$

Interchange the first row with the third, then third with fourth, fourth with fifth and fifth with sixth to get

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{lllll}
1 & 4 & 3 & 0 & 5 \\
0 & 0 & 2 & 3 & 0 \\
2 & 6 & 1 & 9 & 7 \\
8 & 5 & 4 & 3 & 3 \\
9 & 3 & 7 & 7 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now perform $\mathbf{R}_{\mathbf{3}}-2 \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{4}}-8 \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{5}}-9 \mathbf{R}_{\mathbf{1}}$ to get

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 0 & 2 & 3 & 0 \\
0 & -2 & -5 & 9 & -3 \\
0 & -27 & -20 & 3 & -37 \\
0 & -33 & -20 & 7 & -44 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Interchange the second and the third row, and perform $-\frac{1}{2} \mathbf{R}_{\mathbf{2}}, \frac{1}{2} \mathbf{R}_{\mathbf{3}}$ to get

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & -27 & -20 & 3 & -37 \\
0 & -33 & -20 & 7 & -44 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Perform $\mathbf{R}_{\mathbf{4}}+27 \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{5}}+33 \mathbf{R}_{\mathbf{2}}$ to get

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & 0 & \frac{95}{2} & \frac{237}{2} & \frac{7}{2} \\
0 & 0 & \frac{125}{2} & -\frac{283}{2} & \frac{11}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Operation $\mathbf{R}_{\mathbf{4}}-\frac{95}{2} \mathbf{R}_{\mathbf{3}}, \mathbf{R}_{\mathbf{5}}-\frac{125}{2} \mathbf{R}_{\mathbf{3}}$ yields

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & 0 & 0 & -\frac{759}{4} & \frac{7}{2} \\
0 & 0 & 0 & -\frac{851}{4} & \frac{11}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now multiply \mathbf{R}_{4} with $-\frac{4}{759}$

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 1 & -\frac{14}{\frac{14}{}} \\
0 & 0 & 0 & -\frac{851}{4} & \frac{11}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Performing $\mathbf{R}_{\mathbf{5}}+\frac{851}{4} \mathbf{R}_{\mathbf{4}}$ results in

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 1 & -\frac{14}{759} \\
0 & 0 & 0 & 0 & \frac{11}{2}-\frac{851 \times 7}{1518} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which can be converted to

$$
\mathbf{A}^{\prime} \sim\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & 5 \\
0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\
0 & 0 & 1 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 1 & -\frac{14}{759} \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which is an echelon matrix. Its rank is clearly 5 , so the rank of $\mathbf{A}=5$.

Question 3(b) Given $\mathbf{A B}=\mathbf{A C}$ does it follow that $\mathbf{B}=\mathbf{C}$? Can you provide a counterexample?

Solution. It does not follow that $\mathbf{B}=\mathbf{C}$.

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \Rightarrow \mathbf{A B}=\mathbf{0}
$$

$\mathbf{C}=\mathbf{0} \Rightarrow \mathrm{AC}=\mathbf{0}$, but $\mathbf{B} \neq \mathbf{C}$.
Question 3(c) Find a nonsingular matrix which diagonalizes $\mathbf{A}=\left(\begin{array}{ccc}0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right), \mathbf{B}=$ $\left(\begin{array}{ccc}2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 3\end{array}\right)$ simultaneusly. Find the diagonal form of \mathbf{A}.

Solution.

$$
|\mathbf{A}-\lambda \mathbf{B}|=0 \Rightarrow\left|\begin{array}{ccc}
-2 \lambda & -1-\lambda & 2 \lambda \\
-1-\lambda & -1-2 \lambda & 1+2 \lambda \\
2 \lambda & 1+2 \lambda & -3 \lambda
\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}
-2 \lambda & -1-\lambda & 0 \\
-1+\lambda & 0 & 0 \\
2 \lambda & 1+2 \lambda & -\lambda
\end{array}\right|=0
$$

Thus $\lambda=0,1,-1$. This shows that the matrices are diagonalizable simultaneously.
We now determine $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}$ such that $(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}_{\mathbf{i}}=\mathbf{0}, i=1,2,3$. For $\lambda=0$, let $\mathbf{x}_{\mathbf{1}}{ }^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ be such that $(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}_{\mathbf{1}}=\mathbf{0}$. Thus

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $-x_{2}=0,-x_{1}-x_{2}+x_{3}=0, x_{2}=0$. Thus $\mathbf{x}_{1}{ }^{\prime}=(1,0,1)$.
For $\lambda=1$, let $\mathbf{x}_{\mathbf{2}}{ }^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ be such that $(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}_{\mathbf{2}}=\mathbf{0}$. Thus

$$
\left(\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -3 & 3 \\
2 & 3 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $-2 x_{1}-2 x_{2}+2 x_{3}=0,-2 x_{1}-3 x_{2}+3 x_{3}=0,2 x_{1}+3 x_{2}-3 x_{3}=0 \Rightarrow x_{2}-x_{3}=0 \Rightarrow x_{1}=0$. Thus we may take $\mathbf{x}_{\mathbf{2}}{ }^{\prime}=(0,1,1)$.

For $\lambda=-1$, let $\mathbf{x}_{\mathbf{3}}{ }^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ be such that $(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}_{\mathbf{3}}=\mathbf{0}$. Thus

$$
\left(\begin{array}{ccc}
2 & 0 & -2 \\
0 & 1 & -1 \\
-2 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $2 x_{1}-2 x_{3}=0, x_{2}-x_{3}=0,-2 x_{1}-x_{2}+3 x_{3}=0 \Rightarrow x_{1}=x_{2}=x_{3}$. Thus we may take $\mathrm{x}_{\mathbf{3}}{ }^{\prime}=(1,1,1)$.

Let $\mathbf{P}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ so that
$\mathbf{P}^{\prime} \mathbf{A P}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$

