UPSC Civil Services Main 1988 - Mathematics Linear Algebra

Sunder Lal Retired Professor of Mathematics Panjab University Chandigarh

December 16, 2007

Question 1(a) Show that a linear transformation of a vector space \mathcal{V}_m of dimension m into a vector space \mathcal{V}_n of dimension n over the same field can be represented as a matrix. If \mathbf{T} is a linear transformation of \mathcal{V}_2 into \mathcal{V}_4 such that $\mathbf{T}(3,1) = (4,1,2,1)$ and $\mathbf{T}(-1,2) = (3,0,-2,1)$, then find the matrix of \mathbf{T} .

Solution. Let \mathbf{v}_i , i = 1, ..., m be a basis of \mathcal{V}_m and \mathbf{w}_j , j = 1, ..., n be a basis of \mathcal{V}_n . If

$$\mathbf{T}(\mathbf{v}_{\mathbf{i}}) = \sum_{j=1}^{n} a_{ji} \mathbf{w}_{\mathbf{j}}, \quad i = 1, \dots, m$$

then **T** corresponds to the $n \times m$ matrix **A** whose (i, j)'th entry is a_{ij} . In fact $(\mathbf{v}_1, \ldots, \mathbf{v}_m) = (\mathbf{w}_1, \ldots, \mathbf{w}_n) \mathbf{A}$.

It can be easily seen that

$$\mathbf{e_1} = (1,0) = \frac{2}{7}(3,1) - \frac{1}{7}(-1,2)$$
$$\mathbf{e_2} = (0,1) = \frac{1}{7}(3,1) + \frac{3}{7}(-1,2)$$

and therefore

Thus **T** correspon

$$\mathbf{T}(\mathbf{e_1}) = \frac{2}{7}(4, 1, 2, 1) - \frac{1}{7}(3, 0, -2, 1)$$

$$= \frac{1}{7}(5, 2, 6, 1)$$

$$= \frac{1}{7}(5\mathbf{e_1^*} + 2\mathbf{e_2^*} + 6\mathbf{e_3^*} + \mathbf{e_4^*})$$

$$\mathbf{T}(\mathbf{e_2}) = \frac{1}{7}(4, 1, 2, 1) + \frac{3}{7}(3, 0, -2, 1)$$

$$= \frac{1}{7}(13, 1, -4, 4)$$

$$= \frac{1}{7}(13\mathbf{e_1^*} + \mathbf{e_2^*} - 4\mathbf{e_3^*} + 4\mathbf{e_4^*})$$
ds to the matrix $\frac{1}{7}\begin{pmatrix} 5 & 13\\ 2 & 1\\ 6 & -4\\ 7 & 4 \end{pmatrix}$ w.r.t. the standard basis.

Question 1(b) If \mathcal{M}, \mathcal{N} are finite dimensional subspaces of \mathcal{V} , then show that $\dim(\mathcal{M} + \mathcal{N}) = \dim \mathcal{M} + \dim \mathcal{N} - \dim(\mathcal{M} \cap \mathcal{N}).$

Solution. Let $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r\}$ be a basis of $\mathcal{M} \cap \mathcal{N}$ where $\dim(\mathcal{M} \cap \mathcal{N}) = r$. Complete $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r\}$ to a basis $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r, \mathbf{v}_1, \ldots, \mathbf{v}_m\}$ of \mathcal{M} , where $\dim \mathcal{M} = m + r$. Complete $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r\}$ to a basis $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r, \mathbf{w}_1, \ldots, \mathbf{w}_m\}$ of \mathcal{N} , where $\dim \mathcal{N} = n + r$. We shall show that $\mathscr{B} = \{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r, \mathbf{v}_1, \ldots, \mathbf{v}_m, \mathbf{w}_1, \ldots, \mathbf{w}_n\}$ is a basis of $\mathcal{M} + \mathcal{N}$, proving the result.

If $\mathbf{u} \in \mathcal{M} + \mathcal{N}$, then $\mathbf{u} = \mathbf{v} + \mathbf{w}$ for some $\mathbf{v} \in \mathcal{M}$, $\mathbf{w} \in \mathcal{N}$. Since \mathscr{B} is a superset of the bases of $\mathcal{M}, \mathcal{N}, \mathbf{v}, \mathbf{w}$ can be written as linear combination of elements of $\mathscr{B} \Rightarrow \mathbf{u}$ can be written as a linear combination of elements of \mathscr{B} . Thus \mathscr{B} generates $\mathcal{M} + \mathcal{N}$.

We now show that the set \mathscr{B} is linearly independent. If possible let

$$\sum_{i=1}^{n} \alpha_i \mathbf{v_i} + \sum_{i=1}^{m} \beta_i \mathbf{w_i} + \sum_{i=1}^{r} \gamma_i \mathbf{u_i} = \mathbf{0}$$

Since $\sum_{i=1}^{n} \alpha_i \mathbf{v_i} = -\sum_{i=1}^{m} \beta_i \mathbf{w_i} - \sum_{i=1}^{r} \gamma_i \mathbf{u_i}$ it follows that $\sum_{i=1}^{n} \alpha_i \mathbf{v_i} \in \mathcal{N}$. Therefore $\sum_{i=1}^{n} \alpha_i \mathbf{v_i} \in \mathcal{M} \cap \mathcal{N} \Rightarrow \sum_{i=1}^{n} \alpha_i \mathbf{v_i} = \sum_{i=1}^{r} \eta_i \mathbf{u_i}$ for $\eta_i \in \mathbb{R}$. This means that $\sum_{i=1}^{n} \alpha_i \mathbf{v_i} - \sum_{i=1}^{r} \eta_i \mathbf{u_i} = 0$. But $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_r}, \mathbf{v_1}, \dots, \mathbf{v_m}\}$ are linearly independent, so $\alpha_i = 0, 1 \leq i \leq n$. Similarly we can show that $\beta_i = 0, 1 \leq i \leq m$. Then the linear independence of $\{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_r}\}$ shows that $\gamma_i = 0, 1 \leq i \leq r$. Thus the vectors in \mathscr{B} are linearly independent and form a basis of $\mathcal{M} + \mathcal{N}$, showing that the dimension of $\mathcal{M} + \mathcal{N}$ is m + n + r = (m + r) + (n + r) - r, which completes the proof.

Question 1(c) Determine a basis of the subspace spanned by the vectors $\mathbf{v_1} = (1, 2, 3), \mathbf{v_2} = (2, 1, -1), \mathbf{v_3} = (1, -1, -4), \mathbf{v_4} = (4, 2, -2).$

Solution. $\mathbf{v_1}, \mathbf{v_2}$ are linearly independent because if $\alpha \mathbf{v_1} + \beta \mathbf{v_2} = \mathbf{0}$ then $\alpha + 2\beta = 0, 2\alpha + \beta = 0, 3\alpha - \beta = 0 \Rightarrow \alpha = \beta = 0$. If $\mathbf{v_3} = \alpha \mathbf{v_1} + \beta \mathbf{v_2}$, then the three linear equations $\alpha + 2\beta = 1, 2\alpha + \beta = -1, 3\alpha - \beta = -4$ should be consistent — clearly $\alpha = -1, \beta = 1$ satisfy all three, showing $\mathbf{v_3} = \mathbf{v_2} - \mathbf{v_1}$. Again suppose $\mathbf{v_4} = \alpha \mathbf{v_1} + \beta \mathbf{v_2}$, then the three linear equations $\alpha + 2\beta = 4, 2\alpha + \beta = 2, 3\alpha - \beta = -2$ should be consistent — clearly $\alpha = 0, \beta = 2$ satisfy all three, showing $\mathbf{v_4} = 2\mathbf{v_2}$.

Hence $\{\mathbf{v_1}, \mathbf{v_2}\}$ is a basis for the vector space generated by $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4}\}$.

Question 2(a) Show that it is impossible for $\mathbf{S} = \begin{pmatrix} a_1 & b \\ b & a_2 \end{pmatrix}$, $b \neq 0$ to have identical eigenvalues.

Solution. We know given **S** symmetric $\exists \mathbf{O}$ orthogonal so that $\mathbf{O}'\mathbf{SO} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, where λ_1, λ_2 are eigenvalues of **S**. If $\lambda_1 = \lambda_2$, then we have $\mathbf{S} = \mathbf{O}'^{-1}(\lambda \mathbf{I})\mathbf{O}^{-1} = \lambda(\mathbf{OO}')^{-1} = \lambda \mathbf{I} \Rightarrow$ $\mathbf{S} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$. Thus if $b \neq 0$, **S** cannot have identical eigenvalues.

Question 2(b) Prove that the eigenvalues of a Hermitian matrix are all real and the eigenvalues of a skew-Hermitian matrix are either zero or pure imaginary.

Solution. See question 2(a), year 1998.

Question 2(c) If $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, A symmetric, then for all $\mathbf{y} \neq \mathbf{0}$ $\mathbf{y}' \mathbf{A}^{-1} \mathbf{y} > 0$. If λ is the largest eigenvalue of \mathbf{A} , then

$$\lambda = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq 0}} \frac{\mathbf{x}' \mathbf{A} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$

Solution. Clearly $\mathbf{A} = \mathbf{A}'\mathbf{A}^{-1}\mathbf{A}$. $\mathbf{x}'\mathbf{A}\mathbf{x} = \mathbf{x}'\mathbf{A}'\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{y}'\mathbf{A}^{-1}\mathbf{y}$ where $\mathbf{y} = \mathbf{A}\mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}$. Since $|\mathbf{A}| \neq 0$, any vector \mathbf{y} can be written as $\mathbf{A}\mathbf{x}$, by taking $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$. Thus $\mathbf{x}'\mathbf{A}\mathbf{x} > 0 \Rightarrow \mathbf{y}'\mathbf{A}^{-1}\mathbf{y} > 0$ for all $\mathbf{y} \neq \mathbf{0}$.

Let
$$M = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq 0}} \frac{\mathbf{x}' \mathbf{A} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$
. Let **O** be an orthogonal matrix such that $\mathbf{O}' \mathbf{A} \mathbf{O} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$.

Let $\mathbf{0} \neq \mathbf{x} = \mathbf{O}\mathbf{y}$, then $\mathbf{x}'\mathbf{x} = \mathbf{y}'\mathbf{O}'\mathbf{O}\mathbf{y} = \mathbf{y}'\mathbf{y}$. Now $\mathbf{x}'\mathbf{A}\mathbf{x} = \mathbf{y}'\mathbf{O}'\mathbf{A}\mathbf{O}\mathbf{y} = \sum_{i}^{\prime}\lambda_{i}y_{i}^{2} \leq \lambda\mathbf{y}'\mathbf{y}$ where λ is the largest eigenvalue of \mathbf{A} . Thus $\lambda \geq \frac{\mathbf{x}'\mathbf{A}\mathbf{x}}{\mathbf{y}'\mathbf{y}} = \frac{\mathbf{x}'\mathbf{A}\mathbf{x}}{\mathbf{x}'\mathbf{x}}$, so $\lambda \geq M$. On the other hand, if $\mathbf{x} \neq \mathbf{0}$ is an eigenvector corresponding to λ , then $\mathbf{x}'\mathbf{A}\mathbf{x} = \lambda\mathbf{x}'\mathbf{x} \Rightarrow \lambda = \frac{\mathbf{x}'\mathbf{A}\mathbf{x}}{\mathbf{x}'\mathbf{x}} \leq M$. Thus $\lambda = M$ as required. Question 3(a) By converting A to an echelon matrix, determine its rank, where

$$\begin{pmatrix} 0 & 0 & 1 & 2 & 8 & 9 \\ 0 & 0 & 4 & 6 & 5 & 3 \\ 0 & 2 & 3 & 1 & 4 & 7 \\ 0 & 3 & 0 & 9 & 3 & 7 \\ 0 & 0 & 5 & 7 & 3 & 1 \end{pmatrix}$$

Solution. Consider

$$\mathbf{A}' = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 \\ 1 & 4 & 3 & 0 & 5 \\ 2 & 6 & 1 & 9 & 7 \\ 8 & 5 & 4 & 3 & 3 \\ 9 & 3 & 7 & 7 & 1 \end{pmatrix}$$

Interchange the first row with the third, then third with fourth, fourth with fifth and fifth with sixth to get

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 0 & 2 & 3 & 0 \\ 2 & 6 & 1 & 9 & 7 \\ 8 & 5 & 4 & 3 & 3 \\ 9 & 3 & 7 & 7 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Now perform $\mathbf{R_3} - 2\mathbf{R_1}, \mathbf{R_4} - 8\mathbf{R_1}, \mathbf{R_5} - 9\mathbf{R_1}$ to get

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & -2 & -5 & 9 & -3 \\ 0 & -27 & -20 & 3 & -37 \\ 0 & -33 & -20 & 7 & -44 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Interchange the second and the third row, and perform $-\frac{1}{2}\mathbf{R_2}, \frac{1}{2}\mathbf{R_3}$ to get

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 0 \\ 0 & -27 & -20 & 3 & -37 \\ 0 & -33 & -20 & 7 & -44 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Perform $\mathbf{R_4} + 27\mathbf{R_2}, \mathbf{R_5} + 33\mathbf{R_2}$ to get

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{95}{2} & \frac{237}{2} & \frac{7}{2} \\ 0 & 0 & \frac{125}{2} & -\frac{283}{2} & \frac{11}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Operation $\mathbf{R_4} - \frac{95}{2}\mathbf{R_3}, \mathbf{R_5} - \frac{125}{2}\mathbf{R_3}$ yields

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & -\frac{759}{4} & \frac{7}{2} \\ 0 & 0 & 0 & -\frac{851}{4} & \frac{11}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Now multiply $\mathbf{R_4}$ with $-\frac{4}{759}$

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 1 & -\frac{14}{759} \\ 0 & 0 & 0 & -\frac{851}{4} & \frac{11}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Performing $\mathbf{R_5} + \frac{851}{4}\mathbf{R_4}$ results in

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5 \\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2} \\ 0 & 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & 1 & -\frac{14}{759} \\ 0 & 0 & 0 & 0 & \frac{11}{2} - \frac{851 \times 7}{1518} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which can be converted to

$$\mathbf{A}' \sim \begin{pmatrix} 1 & 4 & 3 & 0 & 5\\ 0 & 1 & \frac{5}{2} & -\frac{9}{2} & \frac{3}{2}\\ 0 & 0 & 1 & \frac{3}{2} & 0\\ 0 & 0 & 0 & 1 & -\frac{14}{759}\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which is an echelon matrix. Its rank is clearly 5, so the rank of $\mathbf{A} = 5$.

Question 3(b) Given AB = AC does it follow that B = C? Can you provide a counterexample?

Solution. It does not follow that $\mathbf{B} = \mathbf{C}$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow \mathbf{AB} = \mathbf{0}$$

 $\mathbf{C} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{C} = \mathbf{0}$, but $\mathbf{B} \neq \mathbf{C}$.

Question 3(c) Find a nonsingular matrix which diagonalizes $\mathbf{A} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \mathbf{B} =$

 $\begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 3 \end{pmatrix}$ simultaneously. Find the diagonal form of **A**.

Solution.

$$|\mathbf{A} - \lambda \mathbf{B}| = 0 \Rightarrow \begin{vmatrix} -2\lambda & -1 - \lambda & 2\lambda \\ -1 - \lambda & -1 - 2\lambda & 1 + 2\lambda \\ 2\lambda & 1 + 2\lambda & -3\lambda \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} -2\lambda & -1 - \lambda & 0 \\ -1 + \lambda & 0 & 0 \\ 2\lambda & 1 + 2\lambda & -\lambda \end{vmatrix} = 0$$

Thus $\lambda = 0, 1, -1$. This shows that the matrices are diagonalizable simultaneously.

We now determine $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ such that $(\mathbf{A} - \lambda \mathbf{B})\mathbf{x_i} = \mathbf{0}, i = 1, 2, 3$. For $\lambda = 0$, let $\mathbf{x_1}' = (x_1, x_2, x_3)$ be such that $(\mathbf{A} - \lambda \mathbf{B})\mathbf{x_1} = \mathbf{0}$. Thus

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $-x_2 = 0, -x_1 - x_2 + x_3 = 0, x_2 = 0$. Thus $\mathbf{x_1}' = (1, 0, 1)$.

For $\lambda = 1$, let $\mathbf{x_2}' = (x_1, x_2, x_3)$ be such that $(\mathbf{A} - \lambda \mathbf{B})\mathbf{x_2} = \mathbf{0}$. Thus

$$\begin{pmatrix} -2 & -2 & 2\\ -2 & -3 & 3\\ 2 & 3 & -3 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $-2x_1 - 2x_2 + 2x_3 = 0$, $-2x_1 - 3x_2 + 3x_3 = 0$, $2x_1 + 3x_2 - 3x_3 = 0 \Rightarrow x_2 - x_3 = 0 \Rightarrow x_1 = 0$. Thus we may take $\mathbf{x_2}' = (0, 1, 1)$.

For $\lambda = -1$, let $\mathbf{x_3}' = (x_1, x_2, x_3)$ be such that $(\mathbf{A} - \lambda \mathbf{B})\mathbf{x_3} = \mathbf{0}$. Thus

$$\begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -1 \\ -2 & -1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $2x_1 - 2x_3 = 0, x_2 - x_3 = 0, -2x_1 - x_2 + 3x_3 = 0 \Rightarrow x_1 = x_2 = x_3$. Thus we may take $\mathbf{x_3}' = (1, 1, 1)$. Let $\mathbf{P} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ so that $\mathbf{P'AP} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$