UPSC Civil Services Main 1989 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

December 16, 2007

Question 1(a) Find a basis for the null space of the matrix $\mathbf{A}=\left(\begin{array}{ccc}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right)$.
Solution. A is a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} defined by $\mathbf{A}\left(\mathbf{e}_{\mathbf{1}}\right)=3 \mathbf{e}_{\mathbf{1}}^{*}, \mathbf{A}\left(\mathbf{e}_{\mathbf{2}}\right)=$ $\mathbf{e}_{\mathbf{1}}^{*}+\mathbf{e}_{\mathbf{2}}^{*}, \mathbf{A}\left(\mathbf{e}_{\mathbf{3}}\right)=-\mathbf{e}_{\mathbf{1}}^{*}+2 \mathbf{e}_{\mathbf{2}}^{*}$, where $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}$ is the standard basis of \mathbb{R}^{3} and $\mathbf{e}_{\mathbf{1}}^{*}, \mathbf{e}_{\mathbf{2}}^{*}$ is the standard basis of \mathbb{R}^{2}. Thus $\mathbf{A}(a, b, c)=\mathbf{e}_{\mathbf{1}}^{*}(3 a+b-c)+\mathbf{e}_{\mathbf{2}}^{*}(b+2 c)$. Consequently, $(a, b, c) \in$ null space of \mathbf{A} if and only if $3 a+b-c=0, b+2 c=0 \Rightarrow b=-2 c, a=c$. Thus null space of \mathbf{A} is $\{(c,-2 c, c) \mid c \in \mathbb{R}\}$. Note that $\operatorname{rank} \mathbf{A}=2$, so the null space has dimension 1 . A basis for the null space is $(1,-2,1)$, any other multiple of this can also be regarded as a basis.

Question 1(b) If \mathcal{W} is a subspace of a finite dimensional vector space \mathcal{V} then prove that $\operatorname{dim} \mathcal{V} / \mathcal{W}=\operatorname{dim} \mathcal{V}-\operatorname{dim} \mathcal{W}$.

Solution. Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{r}}$ be a basis of $\mathcal{W}, \operatorname{dim} \mathcal{W}=r$. Let $\mathbf{v}_{\mathbf{r}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be $n-r$ vectors in \mathcal{V} so chosen that $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is a basis of $\mathcal{V}, \operatorname{dim} \mathcal{V}=n$. We will show that $\mathbf{v}_{\mathbf{i}}+\mathcal{W}, r+1 \leq i \leq n$ is a basis of $\mathcal{V} / \mathcal{W} \Rightarrow \operatorname{dim} \mathcal{V} / \mathcal{W}=n-r$.

First we show linear independence:

$$
\begin{aligned}
& \sum_{i=r+1}^{n} \alpha_{i}\left(\mathbf{v}_{\mathbf{i}}+\mathcal{W}\right)=0 \\
\Rightarrow & \sum_{i=r+1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}+\mathcal{W}=\mathbf{0}+\mathcal{W} \\
\Rightarrow & \sum_{i=r+1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}} \in \mathcal{W} \\
\Rightarrow & \left.\sum_{i=r+1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}=\sum_{i=1}^{r}-\alpha_{i} \mathbf{v}_{\mathbf{i}} \text { (say }\right) \\
\Rightarrow & \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}=\mathbf{0} \\
\Rightarrow & \alpha_{i}=0,1 \leq i \leq n\left(\mathbf{v}_{\mathbf{i}} \text { are linearly independent. }\right)
\end{aligned}
$$

Thus $\mathbf{v}_{\mathbf{i}}+\mathcal{W}, r+1 \leq i \leq n$ are linearly independent.
If $\mathbf{v}+\mathcal{W}$ is any element of $\mathcal{V} / \mathcal{W}$, then $\mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}$ as $\mathbf{v} \in \mathcal{V}$. Therefore $\mathbf{v}+\mathcal{W}=$ $\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}+\mathcal{W}=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{v}_{\mathbf{i}}+\mathcal{W}\right)=\sum_{i=r+1}^{n} \alpha_{i}\left(\mathbf{v}_{\mathbf{i}}+\mathcal{W}\right)$ because $\mathbf{v}_{\mathbf{1}}+\mathcal{W}=\ldots=\mathbf{v}_{\mathbf{r}}+\mathcal{W}=\mathcal{W}$. Thus $\mathbf{v}_{\mathbf{i}}+\mathcal{W}, r+1 \leq i \leq n$ generate $\mathcal{V} / \mathcal{W}$. Hence $\operatorname{dim} \mathcal{V} / \mathcal{W}=n-r=\operatorname{dim} \mathcal{V}-\operatorname{dim} \mathcal{W}$

Question 1(c) Show that all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in the vector space $\mathcal{V}_{4}(\mathbb{R})$ which obey $x_{4}-x_{3}=x_{2}-x_{1}$ form a subspace \mathcal{V}. Show further that \mathcal{V} is spanned by $\xi_{1}=(1,0,0,-1), \xi_{2}=$ $(0,1,0,1), \xi_{3}=(0,0,1,1)$.

Solution. If $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \mathbf{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathcal{V}$ then $\alpha \mathbf{y}+\beta \mathbf{z}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathcal{V}$ because

$$
\begin{aligned}
a_{4}-a_{3} & =\left(\alpha y_{4}+\beta z_{4}\right)-\left(\alpha y_{3}+\beta z_{3}\right) \\
& =\alpha\left(y_{4}-y_{3}\right)+\beta\left(z_{4}-z_{3}\right) \\
& =\alpha\left(y_{2}-y_{1}\right)+\beta\left(z_{2}-z_{1}\right) \quad \because y_{4}-y_{3}=y_{2}-y_{1}, z_{4}-z_{3}=z_{2}-z_{1} \\
& =a_{2}-a_{1}
\end{aligned}
$$

Thus \mathcal{V} is a subspace of $\mathcal{V}_{4}(\mathbb{R})$. Note that $\mathcal{V} \neq \emptyset$.
Clearly $\xi_{1}, \xi_{2}, \xi_{3}$ are linearly independent $\Rightarrow \operatorname{dim} \mathcal{V} \geq 3$. But $\mathcal{V} \neq \mathcal{V}_{4}(\mathbb{R})$ because $(1,0,0,0) \notin \mathcal{V} \therefore \operatorname{dim} \mathcal{V}<4 \Rightarrow \operatorname{dim} \mathcal{V}=3$.

Hence $\xi_{1}, \xi_{2}, \xi_{3}$ is a basis of \mathcal{V} and therefore span \mathcal{V}.
Question 2(a) Let \mathbf{P} be a real skew-symmetric matrix and \mathbf{I} the corresponding unit matrix. Show that $\mathbf{I}-\mathbf{P}$ is non-singular. Also show that $\mathbf{Q}=(\mathbf{I}+\mathbf{P})(\mathbf{I}-\mathbf{P})^{-1}$ is orthogonal.

Solution. We have proved (question 2(a), year 1998) that the eigenvalues of a skewHermitian and therefore of a skew-symmetric matrix are zero or pure imaginary. This means $|\mathbf{I}-\mathbf{P}| \neq 0$ because 1 cannot be an eigenvalue of \mathbf{P}.
$\mathbf{Q}^{\prime} \mathbf{Q}=\left[(\mathbf{I}-\mathbf{P})^{-1}\right]^{\prime}(\mathbf{I}+\mathbf{P})^{\prime}(\mathbf{I}+\mathbf{P})(\mathbf{I}-\mathbf{P})^{-1}=(\mathbf{I}+\mathbf{P})^{-1}(\mathbf{I}-\mathbf{P})(\mathbf{I}+\mathbf{P})(\mathbf{I}-\mathbf{P})^{-1}$. But $(\mathbf{I}-\mathbf{P})(\mathbf{I}+\mathbf{P})=\mathbf{I}-\mathbf{P}^{2}=(\mathbf{I}+\mathbf{P})(\mathbf{I}-\mathbf{P})$, therefore $\mathbf{Q}^{\prime} \mathbf{Q}=\mathbf{I}$. Similarly $\mathbf{Q Q}^{\prime}=\mathbf{I} \Rightarrow \mathbf{Q}$ is orthogonal.

Related Results:

1. If \mathbf{S} is skew-Hermitian, then $\mathbf{A}=(\mathbf{I}+\mathbf{S})(\mathbf{I}-\mathbf{S})^{-1}$ is unitary. Conversely, if \mathbf{A} is unitary, then \mathbf{A} can be written as $\mathbf{A}=(\mathbf{I}+\mathbf{S})(\mathbf{I}-\mathbf{S})^{-1}$ for some skew-Hermitian matrix \mathbf{S} provided -1 is not an eigenvalue of \mathbf{A}.
Proof:

$$
\begin{aligned}
\overline{\mathbf{A}}^{\prime}= & \left(\overline{(\mathbf{I}-\mathbf{S})^{-1}}\right)^{\prime}(\overline{\mathbf{I}+\mathbf{S})} \\
& =\left(\mathbf{I}-\overline{\mathbf{S}}^{\prime}\right)^{-1}\left(\mathbf{I}+\overline{\mathbf{S}}^{\prime}\right) \\
= & (\mathbf{I}+\mathbf{S})^{-1}(\mathbf{I}-\mathbf{S}) \\
\therefore \mathbf{A} \overline{\mathbf{A}}^{\prime}= & (\mathbf{I}+\mathbf{S})(\mathbf{I}-\mathbf{S})^{-1}(\mathbf{I}+\mathbf{S})^{-1}(\mathbf{I}-\mathbf{S}) \\
= & (\mathbf{I}+\mathbf{S})(\mathbf{I}+\mathbf{S})^{-1}(\mathbf{I}-\mathbf{S})^{-1}(\mathbf{I}-\mathbf{S})=\mathbf{I} \\
& \because(\mathbf{I}-\mathbf{S})^{-1}(\mathbf{I}+\mathbf{S})^{-1}=\left(\mathbf{I}-\mathbf{S}^{2}\right)^{-1}=(\mathbf{I}+\mathbf{S})^{-1}(\mathbf{I}-\mathbf{S})^{-1}
\end{aligned}
$$

Similarly $\overline{\mathbf{A}}^{\prime} \mathbf{A}=\mathbf{I}$, so \mathbf{A} is unitary.
Now $\mathbf{A}(\mathbf{I}-\mathbf{S})=\mathbf{I}+\mathbf{S} \Rightarrow \mathbf{A}-\mathbf{I}=(\mathbf{A}+\mathbf{I}) \mathbf{S} \Rightarrow \mathbf{S}=(\mathbf{A}+\mathbf{I})^{-1}(\mathbf{A}-\mathbf{I})$. It can be checked as above that \mathbf{S} is skew-Hermitian. Note that $|\mathbf{A}+\mathbf{I}| \neq 0$.
2. If \mathbf{H} is Hermitian, then $\mathbf{A}=(\mathbf{H}+i \mathbf{I})^{-1}(\mathbf{H}-i \mathbf{I})$ is unitary and every unitary matrix can be thus represented provided it does not have -1 as its eigenvalue.
3. If \mathbf{S} is real, $\mathbf{S}^{\prime}=-\mathbf{S}$ and $\mathbf{S}^{2}=-\mathbf{I}$, then \mathbf{S} is orthogonal and of even order, and there exist non-null vectors \mathbf{x}, \mathbf{y} such that $\mathbf{x}^{\prime} \mathbf{x}=\mathbf{y}^{\prime} \mathbf{y}=1, \mathbf{x}^{\prime} \mathbf{y}=0, \mathbf{S x}+\mathbf{y}=\mathbf{0}, \mathbf{S y}=\mathbf{x}$.
Proof: $\mathbf{S}^{\prime} \mathbf{S}=-\mathbf{S S}=\mathbf{I}$, so \mathbf{S} is orthogonal, $|\mathbf{S}| \neq 0 \Rightarrow \mathbf{S}$ is of even order.
Choose \mathbf{y} such that $\mathbf{y}^{\prime} \mathbf{y}=1$. Then $\mathbf{y}^{\prime} \mathbf{S y}=\left(\mathbf{y}^{\prime} \mathbf{S y}\right)^{\prime}=\mathbf{y}^{\prime} \mathbf{S}^{\prime} \mathbf{y}=-\mathbf{y}^{\prime} \mathbf{S y} \Rightarrow \mathbf{y}^{\prime} \mathbf{S y}=0$. Set $\mathbf{x}=\mathbf{S y}$, then $\mathbf{y}^{\prime} \mathbf{x}=0, \mathbf{S x}+\mathbf{y}=\mathbf{0}$. In addition, $\mathbf{x}^{\prime} \mathbf{x}=\mathbf{y}^{\prime} \mathbf{S}^{\prime} \mathbf{S y}=\mathbf{y}^{\prime} \mathbf{y}=1$.

Question 2(b) Show that an $n \times n$ matrix \mathbf{A} is similar to a diagonal matrix if and only if the set of eigenvectors of \mathbf{A} includes a set of n linearly independent vectors.

Solution. See question 2(c) of 1998.
Question 2(c) Let r_{1}, r_{2} be distinct eigenvalues of a matrix A and let $\xi_{\mathbf{i}}$ be an eigenvector corresponding to $r_{i}, i=1,2$. If \mathbf{A} is Hermitian, show that $\bar{\xi}_{1}^{\prime} \xi_{2}=0$.

Solution. See question 2(c) of 1993.

Question 3(a) Find the roots of the equation $|x \mathbf{A}-\mathbf{B}|=0$ where $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right)$, and $\mathbf{B}=$ $\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)$. Use the result to show that the real quadratic forms $F=x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}, G=6 x_{1} x_{2}$ can be simultaneously reduced by a non-singular linear substitution to $y_{1}^{2}+y_{2}^{2}, y_{1}^{2}-3 y_{2}^{2}$.

Solution. $|x \mathbf{A}-\mathbf{B}|=\left|\begin{array}{cc}x & x-3 \\ x-3 & 4 x\end{array}\right|=4 x^{2}-(x-3)^{2} \Rightarrow \pm 2 x=x-3 \Rightarrow x=-3,1$.
Let $\mathbf{x}_{\mathbf{1}}=\left(x_{1}, x_{2}\right)$ be a row vector such that $(\mathbf{A}-\mathbf{B})\binom{x_{1}}{x_{2}}=\mathbf{0}$.

$$
\left(\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\mathbf{0} \Rightarrow x_{1}-2 x_{2}=0
$$

We take $x_{1}=2, x_{2}=1$, so $\mathbf{x}_{\mathbf{1}}=(2,1)$.
Let $\mathbf{x}_{\mathbf{2}}=\left(x_{1}, x_{2}\right)$ be a row vector such that $(-3 \mathbf{A}-\mathbf{B})\binom{x_{1}}{x_{2}}=\mathbf{0}$.

$$
\left(\begin{array}{cc}
-3 & -6 \\
-6 & -12
\end{array}\right)\binom{x_{1}}{x_{2}}=\mathbf{0} \Rightarrow x_{1}+2 x_{2}=0
$$

We take $x_{1}=-2, x_{2}=1$, so $\mathbf{x}_{\mathbf{2}}=(-2,1)$.

$$
\mathbf{x}_{\mathbf{1}} \mathbf{A} \mathbf{x}_{\mathbf{1}}^{\prime}=(2,1)\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)\binom{2}{1}=(2,1)\binom{3}{6}=12 .
$$

$$
\mathbf{x}_{\mathbf{2}} \mathbf{A} \mathbf{x}_{2}^{\prime}=(-2,1)\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)\binom{-2}{1}=(-2,1)\binom{-1}{2}=4
$$

Note that $\mathbf{x}_{\mathbf{1}} \mathbf{A x}_{\mathbf{2}}^{\prime}=0$.
$\mathbf{x}_{\mathbf{1}} \mathbf{B} \mathbf{x}_{\mathbf{1}}^{\prime}=(2,1)\left(\begin{array}{lll}0 & 3 \\ 3 & 0\end{array}\right)\binom{2}{1}=(2,1)\binom{3}{6}=12$.
$\mathbf{x}_{\mathbf{2}} \mathbf{B} \mathbf{x}_{\mathbf{2}}^{\prime}=(-2,1)\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)\binom{-2}{1}=(-2,1)\binom{3}{-6}=-12$.
Note that $\mathbf{x}_{\mathbf{1}} \mathbf{B x}_{\mathbf{2}}^{\prime}=0$.
Thus if $\mathbf{P}=\left[\mathbf{x}_{\mathbf{1}}{ }^{\prime}, \mathbf{x}_{\mathbf{2}}{ }^{\prime}\right]$, then $\mathbf{P}^{\prime} \mathbf{A P}=\left(\begin{array}{cc}12 & 0 \\ 0 & 4\end{array}\right)$, and $\mathbf{P}^{\prime} \mathbf{B P}=\left(\begin{array}{cc}12 & 0 \\ 0 & -12\end{array}\right)$. Let $\mathbf{Q}=\left(\begin{array}{cc}\frac{1}{\sqrt{12}} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$, then $\mathbf{Q}^{\prime} \mathbf{P}^{\prime} \mathbf{A P Q}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\mathbf{Q}^{\prime} \mathbf{P}^{\prime} \mathbf{B P Q}=\left(\begin{array}{cc}1 & 0 \\ 0 & -3\end{array}\right)$ as desired. Thus the required non-singular linear transformation is $\mathbf{P Q}$.

Question 3(b) Show that $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\left(\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right)\left(\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right)^{-1}$.

Solution.

$$
\begin{aligned}
\text { R.H.S } & =\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
\tan \frac{\theta}{2} & 1
\end{array}\right)\left(\begin{array}{cc}
\cos ^{2} \frac{\theta}{2} & -\sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \cos \frac{\theta}{2} & \cos ^{2} \frac{\theta}{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} & -2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} & -\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}
\end{array}\right)=\text { L.H.S }
\end{aligned}
$$

Question 3(c) Verify the Cayley-Hamilton theorem for $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)$.
Solution. The characteristic equation for \mathbf{A} is $\left|\begin{array}{cc}-\lambda & 1 \\ -2 & 3-\lambda\end{array}\right|=0 \Rightarrow-3 \lambda+\lambda^{2}+2=0$
Thus according to the Cayley-Hamilton theorem $\mathbf{A}^{2}-3 \mathbf{A}+2 \mathbf{I}=\mathbf{0}$.
$\mathbf{A}^{2}=\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)=\left(\begin{array}{ll}-2 & 3 \\ -6 & 7\end{array}\right)$
$\left(\begin{array}{ll}-2 & 3 \\ -6 & 7\end{array}\right)-3\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)+2\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
Thus the Cayley Hamilton theorem is verified for $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right)$.

