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1 Linear Algebra

Question 1(a) State any definition of the determinant of an n×n matrix and show that the
determinant function is multiplicative i.e. det AB = det A det B for any two n×n matrices
A,B. You may assume the matrices to be real.

Solution. Let π be a permutation of 1, . . . , n. Define sign(π) as follows: count the number
of pairs of numbers that need to be interchanged to get to π from the identity permutation.
If this is even, the sign is 1, and if it is odd, the sign is −1. Now if Π is the set of all
permutations of 1, . . . , n, define

det A =
∑
π∈Π

sign(π)
∏
i

aiπ(i)

where aij are the elements of A.
Note that the det A is n-linear i.e. if we perform any row or column operation on A the

determinant is unchanged. Also, if any two rows are swapped, the sign of the determinant
changes. These are simple consequences of the above definition.

Consider the 2n× 2n matrix

P =



a11 a12 . . . a1n 0 . . . 0
a21 a22 . . . a2n 0 . . . 0
...

...
...

...
...

an1 an2 . . . ann 0 . . . 0
−1 0 . . . 0 b11 . . . b1n

0 −1 . . . 0 b21 . . . b2n
...

...
...

...
...

0 0 . . . −1 bn1 . . . bnn
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Then det P = det A det B, because if for any permutation π, π(i) > n for i ≤ n, then
the corresponding element of the sum is 0 as aiπ(i) = 0. Thus π(i) ≤ n if i ≤ n, and
consequently π(j) > n if j > n. So each permutation consists of a permutation of 1, . . . , n
and a permutation of n + 1, . . . , 2n, consequently we can factor the sum, to get det P =
det A det B.

Now we perform a series of column operations to P — add b11C1 + . . .+ bn1Cn to Cn+1,
to get 

a11 a12 . . . a1n c11 0 . . . 0
a21 a22 . . . a2n c21 0 . . . 0
...

...
...

...
...

an1 an2 . . . ann cn1 0 . . . 0
−1 0 . . . 0 0 b12 . . . b1n

0 −1 . . . 0 0 b22 . . . b2n
...

...
...

...
...

...
0 0 . . . −1 0 bn2 . . . bnn


where C = AB = (cij). Similarly add b12C1 + . . .+ bn2Cn to Cn+2, . . ., b1nC1 + . . .+ bnnCn

to C2n to get 
A C

−1 0 . . . 0
0 −1 . . . 0

. . .
0 0 . . . −1

 0


We can now verify that det P = det C. Any permutation π that leads to a non-zero term
in the determinant sum must have π(j) = j − n for j > n, thus piπ(i) = −1, i > n. Also
π(j) > n for j ≤ n, so any such π can be written as a permutation of 1, . . . , n followed by a
series of swaps of the i-th number with the (n + i)-th number, which is n + i. Also sign(π)
is the same as the sign of the corresponding permutation π′ of 1, . . . , n — we first do π′ by
exchanges and then additionally swap the i-th element with the (i+ n)-th element, for each
i ≤ n. Now if n is even, this involves an even number of additional swaps, and multiply by
(−1)n corresponding to piπ(i) for i > n, otherwise we get an odd number of additional swaps,
flipping the sign, but we still multiply by (−1)n = −1.

Thus det P = det C = det A det B.

Question 1(b) Prove Laplace’s formula for simulataneous expansion of the determinant by
the first row and column; that given an (n+1)×(n+1) matrix in the block form M =

(
α β
γ D

)
,

where α is a scalar, β is a 1×n matrix (a row vector), γ is a n×1 matrix (a column vector),
and D is an n×n matrix, then det M = α det D−βD′γ′, where D′ is the matrix of cofactors
of D and βD′γ′ stands for the matrix product of size 1× 1.

Solution. Let M = (aij), 1 ≤ i, j ≤ n + 1. Thus α = a11, β = (a12 . . . a1,n+1),
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γ =

 a21
...

an+1,1

 and D =

 a22 . . . a2,n+1
...

...
an+1,2 . . . an+1,n+1

.

det M = a11|A11| − a12|A12| + . . . + (−1)na1,n+1|A1,n+1| where Aij is the minor corre-
sponding to aij (formed by deleting the i-th row and j-th column of A). Clearly D = A11,
so det M = α det D−

∑n+1
j=2 (−1)ja1j det A1j. Now

|A1j| =

∣∣∣∣∣∣∣∣∣
a21 a22 . . . a2,j−1 a2,j+1 . . . a2,n+1

a31 a32 . . . a3,j−1 a3,j+1 . . . a3,n+1
...

...
...

...
...

an+1,1 an+1,2 . . . an+1,j−1 an+1,j+1 . . . an+1,n+1

∣∣∣∣∣∣∣∣∣
Let Bij be the minor of aij in D. Expanding |A1j| in terms of the first column, we get

|A1j| = a21|B2j| − a31|B3j|+ . . .+ (−1)n+1an+1,1|Bn+1,1|

det M = α det D−
n+1∑
j=2

n+1∑
i=2

a1jai1|Bij|(−1)i(−1)j

= α det D− (a12 a13 . . . a1,n+1)(cij)

 a21
...

an+1,1


= α det D− βD′γ

where cij = (−1)i+j|Bij|, thus D′ = (cij) is the matrix of cofactors of D.

Question 1(c) For M as in 1(b), if D is invertible, show that det M = det D(α−βD−1γ).

Solution. If D is invertible, then DD′ = D′D = (det D)I ⇒ D′ = D−1 det D. So
det M = α det D− βD′γ = α det D− βD−1 det Dγ = det D(α− βD−1γ).

Question 2(a) Write the definition of the characteristic polynomial, eigenvalues and eigen-
vectors of a square matrix. Also say briefly something about the importance and/or applica-
tions of these notions.

Solution. Let A be an n× n real or complex matrix. The polynomial |xIn −A| is called
the characteristic polynomial of A. The roots of this polynomial are called the eigenvalues
of A. If λ is an eigenvalue of A, then all the non-zero vectors x such that Ax = λx are
called eigenvectors of A corresponding to λ.

Many problems in mathematics and other sciences require finding eigenvalues and eigen-
vectors of an operator.
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• Eigenvalues can be used to find a very simple matrix for an operator — either diagonal
or a block diagonal form. This can be used to compute powers of matrices quickly.

• If one wishes to solve a linear differential system like x′ = Ax, or study the local
properties of a nonlinear system, finding the diagonal form of the matrix can give us
a decoupled form of the system, allowing us to find the solution or understand its
qualitative behavior, like its stability and oscillatory behavior.

• The calculation of Google’s Pagerank is essentially the computation of the principal
eigenvector (corresponding to the eigenvalue with the largest absolute value) of a very
large matrix (the adjacency matrix of the web graph) — this is used to find the relative
importance of documents on the World Wide Web. Similar calculations are used to
compute the stationary distribution of a Markov system.

• In mechanics, the eigenvectors of the inertia tensor are used to define the principal
axes of a rigid body, which are important in analyzing the rotation of the rigid body.

• Eigenvalues can be used to compute low rank approximations to matrices, which help
in reducing the dimensionality of various problems. This is used in statistics and
operations research to explain a large number of observables in terms of a few hidden
variables + noise.

• Eigenvalues can help us determine the form of a quadric or higher dimensional surface
— see the relevant section in year 1999.

• In quantum mechanics, states are represented by unit vectors, while observable quan-
tities (like position and energy) are represented by Hermitian matrices. The basic
problem in any quantum system is the determination of the eigenvalues and eigenvec-
tors of the energy matrix. The eigenvalues are the observed values of the observable
quantity, and discreteness of the eigenvalues leads to the quantization of the observed
values.

Question 2(b) Show that a Hermitian matrix possesses a set of eigenvectors which form
an orthonormal basis. State briefly how or why a general n× n complex matrix may fail to
possess n linearly independent eigenvectors.

Solution. Let H be Hermitian, and λ1, . . . , λn its eigenvalues, not necessarily distinct. Let
x1 with norm 1 be an eigenvector corresponding to λ1. Then there exists (from a result
analogous to the result used in question 3(a), year 1995) a unitary matrix U such that x1 is
its first column. Therefore

U1
−1HU1 = U1

′
HU1 =

(
λ1 L
0 H1

)
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where H1 is (n− 1)× (n− 1) and L is (n− 1)× 1. Since U1
′
HU1 is Hermitian, it follows

that L = 0. Consequently

U1
′
HU1 =

(
λ1 0
0 H1

)
Now H1 is Hermitian with eigenvalues λ2, . . . , λn. Repeating the above argument, we find
U∗2 an (n− 1)× (n− 1) unitary matrix such that

U∗2
′
H1U

∗
2 =

(
λ2 0
0 H2

)

If U2 =

(
1 0
0 U∗2

)
then U2 is unitary, and

U2
′
U1
′
HU1U2 =

λ1 0 0
0 λ2 0
0 0 H2


Repeating this process or by induction, we can get U unitary such that

U
′
HU =

λ1 · · · 0
...

...
0 · · · λn


If U = [C1,C2, . . . ,Cn], then C1,C2, . . . ,Cn are eigenvectors of H and form an orthonormal
system.

A complex matrix A would fail to have n eigenvectors which are linearly independent
if A is not diagonalizable i.e. we cannot find P such that P−1AP is a diagonal matrix.
For example if A =

(
1 c
0 1

)
, c 6= 0, and x1,x2 are two independent eigenvectors of A, then

P = [x1 x2] would lead to P−1AP =
(

1 0
0 1

)
⇒ A =

(
1 0
0 1

)
which is false.

Question 2(c) Define the minimal polynomial and show that a complex matrix is diago-
nalizable (i.e. conjugate to a diagonal matrix) if and only if the minimal polynomial has no
repeated root.

Solution. Given a complex n× n complex matrix A, if f(x) is a nonzero polynomial with
complex coefficients of least degree such that f(A) = 0, then f(x) is called the minimal
polynomial of A. The Cayley-Hamilton therem tells us that any n × n complex matrix A
satisfies the degree n polynomial equation |A − xI| = 0, so the minimal polynomial exists
and is of degree ≤ n.

A complex n×n matrix can be thought of as a linear transformation from Cn to Cn. Let
T : V −→ V , dimV = n. Let the minimal polynomial of T be p(x), having distinct roots
c1, . . . , ck, so p(x) =

∏k
j=1(x− cj). We shall show that T is diagonalizable.

If k = 1, then the minimal polynomial is x−c, thus T−cI = 0, so T = cI is diagonalizable.
So assume k > 1.
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Consider the polymonials pj =
k∏
i=1
i 6=j

x−ci
cj−ci . Clearly pj(ci) = 0 for i 6= j, and pi(ci) = 1. This

implies that the polynomials p1, . . . , pk are linearly independent, and each one is of degree
k − 1 < k. Thus these form a basis of the space of polynomials of degree ≤ k − 1. Thus
given any polynomial g of degree ≤ k − 1, g =

∑k
i=1 αipi, where αi = g(ci). In particular,

1 =
∑k

i=1 pi, x =
∑k

i=1 cipi. Thus

I =
k∑
i=1

pi(T), T =
k∑
i=1

cipi(T)

Moreover pi(T)pj(T) = 0, i 6= j because pi(x)pj(x) is divisible by the minimal polynomial
of T. Also pj(T) 6= 0, 1 ≤ j ≤ k, because the degree of pj is less than k, the degree of the
minimal polynomial of T.

Set Vi = pi(T)V , then V = I(V) =
∑k

i=1 pi(T)V = V1 + . . .+Vk. We shall now show that
Vi = Vci , the eigenspace of T with respect to ci.

v ∈ Vi ⇒ v = pi(T)w for some w ∈ V . Since (x−ci)pi is divisible by p, (T−ciI)v = 0, so
Tv = civ so v ∈ Vci . Conversely, if v ∈ Vci , then Tv = civ, or (T−ciI)v = 0⇒ pj(T)v = 0
for j 6= i. Since v = pi(T)v + . . .+ pk(T)v, we get v = pi(T)v⇒ v ∈ Vi.

Thus V =
∑k

i=1 Vci so V has a basis consisting of eigenvectors, so T is diagonalizable.
Conversely let T be diagonalizable, then we shall show that the minimal polynomial of

T has distinct roots. Let

P−1TP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
0 0 . . . λn


and out of λ1, . . . , λn, let λ1, . . . , λk be distinct. Let g(x) = (x − λ1) . . . (x − λk). Then
v ∈ V ⇒ v = v1 + . . . + vk where vi ∈ Vλi

, the eigenspace of λi. Thus g(T)(v) = 0, so
g(T) = 0. Thus g(x) is divisible by the minimal polynomial of T. Since g(x) has all distinct
roots, it immediately follows that the minimal polynomial also has all distinct roots.

Question 3(a) Show that a 2×2 matrix M =
(
a b
c d

)
is expressible in the form LDU, where

L has the form
(

1 0
α 1

)
, D is diagonal and U has the form

(
1 β
0 1

)
If and only if either a 6= 0

or a = b = c = 0. Also show that when a 6= 0 the factorization M = LDU is unique.

Solution. Given M =
(
a b
c d

)
, suppose M = LDU =

(
1 0
α 1

)(
a1 0
0 a2

)(
1 β
0 1

)
=
(
a1 0
a1α a2

)(
1 β
0 1

)
=(

a1 a1β
a1α a1αβ+a2

)
. Thus M = LDU⇒ a1 = a, a1β = b, a1α = c, a1αβ+ a2 = d. Thus if a = 0,

then b = c = 0 and d = a2, In this case, M =
(

0 0
0 d

)
=
(

1 0
α 1

)(
0 0
0 d

)(
1 β
0 1

)
whatever α, β may

be, i.e. M can be represented as LDU in infinitely many ways.
If a 6= 0, then a1 = a, β = b

a
, α = c

a
, a2 = d − bc

a
are uniquely determined. Thus

M =
(
a b
c d

)
=
( 1 0

c
a

1

)( a 0
0 d− bc

a

)(
1 b

a
0 1

)
and has a unique representation.
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Conversely, if M =
(

0 0
0 d

)
, i.e. a = b = c = 0, then M =

(
1 0
α 1

)(
0 0
0 d

)(
1 β
0 1

)
for any

α, β ∈ R. If M =
(
a b
c d

)
, a 6= 0, then M = LDU with L =

( 1 0
c
a

1

)
, D =

( a 0
0 d− bc

a

)
, U =

(
1 b

a
0 1

)
as shown above.

Question 3(b) Suppose a real matrix has eigenvalue λ, possibly complex. Show that there
exists a real eigenvector for λ if and only if λ is real.

Solution. If λ is real, then the n× n matrix A− λI defines a linear transformation from
Rn to Rn. Since |A−λI| = 0, the rows are linearly dependent, so there exists x ∈ Rn,x 6= 0
such that (A− λI)x = 0⇒ Ax = λx. Thus there exists a real eigenvector for λ.

Conversely, suppose Ax = λx, x ∈ Rn,x 6= 0. then λx = Ax = Ax = λx = λx ⇒
(λ− λ)x = 0⇒ λ− λ = 0 ∵ x 6= 0⇒ λ = λ i.e. λ is real.

Question 3(c) If a 2×2 matrix A has order n, i.e. An = I2, then show that A is conjugate

to the matrix

(
cos θ sin θ
− sin θ cos θ

)
where θ = 2πm

n
for some integer m.

Solution. Note: A has to be real, otherwise the result is false: if α1, α2 are two distinct
n-th roots of unity such that α1 6= α2, then A =

(
α1 0
0 α2

)
has order n, but A is not conjugate

to

(
cos θ sin θ
− sin θ cos θ

)
whose eigenvalues are complex conjugates of each other.

An = I⇒ eigenvalues of A are n-th roots of unity. If A has repeated eigenvalues, then
these can be 1 or −1, because eigenvalues of real matrices are complex conjugates of each
other, so the repeated eigenvalues must be real, and they also must be roots of 1.

Case 1: A has eigenvalues 1, 1. There exists P non-singular such that P−1AP =
(

1 c
0 1

)
.

Now (P−1AP)n =
(

1 nc
0 1

)
= P−1AnP = P−1I2P = I2, so nc = 0 ⇒ c = 0. Thus A is

conjugate to I2 =

(
cos θ sin θ
− sin θ cos θ

)
, θ = 2πn

n
.

Case 2: A has eigenvalues −1,−1. There exists P non-singular such that P−1AP =( −1 c
0 −1

)
. Now P−1AnP =

( −1 nc
0 −1

)
or
(

1 nc
0 1

)
, according as n is odd or even. But An = I2,

therefore n is even and c = 0. Thus A is conjugate to −I2 =

(
cos θ sin θ
− sin θ cos θ

)
, θ = 2πm

n
,m =

n
2
.

Case 3: A has distinct eigenvalues λ1, λ2. Then λ1 = λ2. If λ1 = cos θ + i sin θ, with

θ = 2πm
n

, set B =

(
cos θ sin θ
− sin θ cos θ

)
. The eigenvalues of B are roots of

∣∣∣∣cos θ − λ sin θ
− sin θ cos θ − λ

∣∣∣∣ =

0 ⇒ λ = cos θ ± i sin θ. Since A and B have the same eigenvalues λ1, λ2 distinct, both are
conjugate to

(
λ1 0
0 λ2

)
and are therefore conjugate to each other.
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