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Question 1(a) Let V(R) be the real vector space of all 2×3 matrices with real entries. Find
a basis of V(R). What is the dimension of V(R).

Solution. Let A1 =

(
1 0 0
0 0 0

)
, A2 =

(
0 1 0
0 0 0

)
, A3 =

(
0 0 1
0 0 0

)
and B1 =

(
0 0 0
1 0 0

)
, B2 =

(
0 0 0
0 1 0

)
, B3 =

(
0 0 0
0 0 1

)
. Clearly Ai,Bi, i = 1, 2, 3 ∈

V(R). These generate V(R) because

A =

(
a1 a2 a3

b1 b2 b3

)
= a1A1 + a2A2 + a3A3 + b1B1 + b2B2 + b3B3

for any arbitrary element A ∈ V(R).
They are linearly independent because if the RHS in the above equation was equal to(

0 0 0
0 0 0

)
, then ai = 0, bi = 0 for i = 1, 2, 3. Thus Ai,Bi, i = 1, 2, 3 is a basis for V(R) and

the dimension of V(R) is 6.

Question 1(b) Let C be the field of complex numbers and let T be the function from C3 to
C3 defined by

T(x1, x2, x3) = (x1 − x2 + 2x3, 2x1 + x2,−x1 − 2x2 + 2x3)

1. Verify that T is a linear transformation.

2. If (a, b, c) ∈ C3, what are the conditions on a, b, c so that (a, b, c) is in the range of T?
What is the rank of T?
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3. What are the conditions on a, b, c so that (a, b, c) is in the null space of T? What is
the nullity of T?

Solution. T(e1) = (1, 2,−1),T(e2) = (−1, 1,−2),T(e3) = (2, 0, 2). Clearly T(e1) and
T(e3) are linearly independent. If

(−1, 1, 2) = α(1, 2,−1) + β(2, 0, 2)

then α+2β = −1, 2α = 1,−α+2β = −2, so α = 1
2
, β = −3

4
, so T(e2) is a linear combination

of T(e1) and T(e3). Thus rank of T is 2, nullity of T is 1.
If (a, b, c) is in the range of T, then (a, b, c) = α(1, 2,−1) + β(2, 0, 2). Thus α + 2β =

a, 2α = b,−α+ 2β = c. From the first two equations, α = b
2
, β =

a− b
2

2
. The equations would

be consistent if − b
2

+ a− b
2

= c, or a = b + c. So the condition for (a, b, c) to belong to the
range of T is a = b+ c.

If (a, b, c) ∈ null space of T, then a − b + 2c = 0, 2a + b = 0,−a − 2b + 2c = 0. Thus
3a+2c = 0, so a = −2c

3
, b = 4c

3
. Thus the conditions for (a, b, c) to belong to the null space of

T are 3a+2c = 0, 3b = 4c. Thus the null space consists of the vectors {(−2c
3
, 4c

3
, c) | c ∈ R},

showing that the nullity of T is 1.

Question 1(c) If A =
(

1 2
1 3

)
, express A6−4A5 +8A4−12A3 +14A2 as a linear polynomial

in A.

Solution. Characteristic polynomial of A is
∣∣ 1−λ 2

1 3−λ
∣∣ = (λ− 3)(λ− 1)− 2 = λ2 − 4λ+ 1.

By the Cayley Hamilton theorem, A2 − 4A + I = 0. Dividing the given polynomial by
A2 − 4A + I, we have

A6 − 4A5 + 8A4 − 12A3 + 14A2

= A4(A2 − 4A + I) + 7A4 − 12A3 + 14A2

= (A4 + 7A2)(A2 − 4A + I) + 16A3 + 7A2

= (A4 + 7A2 + 16A)(A2 − 4A + I) + 71A2 − 16A

= (A4 + 7A2 + 16A + 71I)(A2 − 4A + I) + 268A− 71I

Since A2 − 4A + I = 0, A6 − 4A5 + 8A4 − 12A3 + 14A2 = 268A− 71I.

Question 2(a) Let T : R2 −→ R2 be a linear transformation defined by T(x1, x2) =
(−x2, x1).

1. What is the matrix of T in the standard basis of R2?

2. What is the matrix of T in the ordered basis B = {α1, α2} where α1 = (1, 2), α2 =
(1,−1)?
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Solution. T(e1) = (0, 1) = e2, T(e2) = (−1, 0) = −e1. Thus (T(e1),T(e2)) =
(e1 e2)

(
0 −1
1 0

)
. So the matrix of T in the standard basis is

(
0 −1
1 0

)
.

T(α1) = (−2, 1),T(α2) = (1, 1). If (a, b) = xα1 + yα2, then x + y = a, 2x − y = b, so
x = a+b

3
, y = 2a−b

3
. This shows that

T(α1) = (−2, 1) = −1
3
α1 − 5

3
α2

T(α2) = (1, 1) = 2
3
α1 + 1

3
α2

Thus (T(α1) T(α2)) = (α1 α2)

(
−1

3
2
3

−5
3

1
3

)
. Consequently the matrix of T in the ordered

basis B is

(
−1

3
2
3

−5
3

1
3

)
.

Question 2(b) Determine a non-singular matrix P such that P′AP is a diagonal matrix,

where A =

0 1 2
1 0 3
2 3 0

. Is the matrix congruent to a diagonal matrix? Justify your answer.

Solution. The quadratic form associated with A is Q(x, y, z) = 2xy + 4xz + 6yz. Let
x = X, y = X + Y, z = Z (thus X = x, Y = y − x, Z = z). Then

Q(X, Y, Z) = 2X2 + 2XY + 4XZ + 6XZ + 6Y Z

= 2X2 + 2XY + 10XZ + 6Y Z

= 2(X +
Y

2
+

5

2
Z)2 − Y 2

2
− 25

2
Z2 + Y Z

= 2(X +
Y

2
+

5

2
Z)2 − 1

2
(Y − Z)2 − 12Z2

Put

ξ = X +
Y

2
+

5

2
Z =

x

2
+
y

2
+

5z

2
η = Y − Z = −x+ y − z
ζ = Z = zxy

z

 =

 1
2

1
2

5
2

−1 1 −1
0 0 1

−1ξη
ζ

 =

1 −1
2
−3

1 1
2
−2

0 0 1

ξη
ζ


Q(x, y, z) transforms to 2ξ2 − 1

2
η2 − 12ζ2. Thus

P′AP =

2 0 0
0 −1

2
0

0 0 −12


with P =

1 −1
2
−3

1 1
2
−2

0 0 1

 Clearly A is congruent to a diagonal matrix as shown above.
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Question 2(c) Reduce the matrix
1 3 4 −5
−2 −5 −10 16
5 9 33 −68
4 7 30 −78


to echelon form by elementary row transformations.

Solution. Let the given matrix be A. Operations R2 + 2R1,R3 − 5R1,R4 − 4R1 ⇒

A ≈


1 3 4 −5
0 1 −2 6
0 −6 13 −43
0 −5 14 −58


Operations R3 + 6R2,R4 + 5R2 ⇒

A ≈


1 3 4 −5
0 1 −2 6
0 0 1 −7
0 0 4 −28


Operations R4 − 4R3 ⇒

A ≈


1 3 4 −5
0 1 −2 6
0 0 1 −7
0 0 0 0


Operation R1 − 3R2 ⇒

A ≈


1 0 10 −23
0 1 −2 6
0 0 1 −7
0 0 0 0


Operations R1 − 10R3,R2 + 2R3 ⇒

A ≈


1 0 0 47
0 1 0 −8
0 0 1 −7
0 0 0 0


which is the required row echelon form. The rank of A is 3.
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Question 3(a) U is an n-rowed unitary matrix such that |I−U| 6= 0, show that the matrix
H defined by iH = (I + U)(I−U)−1 is Hermitian. If eiα1 , . . . , eiαn are the eigenvalues of U
then cot α1

2
, . . . , cot αn

2
are eigenvalues of H.

Solution.

(iH)(I−U) = (I + U)

⇒ (I−U
′
)(iH)

′
= (I + U

′
)

Substituting I = U
′
U, we have from the second equation that U

′
(U− I)(iH)

′
= U

′
(U + I).

So (iH)
′
= −iH′ = −(I + U)(I−U)−1 = −iH, so H

′
= H, thus H is Hermitian.

If an eigenvalue of a nonsingular matrix A is λ, then λ−1 is an eigenvalue of A−1 ∵ Ax =
λx⇒ λ−1x = A−1x, note that λ 6= 0 ∵ |A| 6= 0. Thus the eigenvalues of H are

1

i

1 + eiαj

1− eiαj
, 1 ≤ j ≤ n

= −ie
iαj/2 + e−iαj/2

e−iαj/2 − eiαj/2
, 1 ≤ j ≤ n

=
eiαj/2+e−iαj/2

2

e−iαj/2−eiαj/2
2i

, 1 ≤ j ≤ n

=
cotαj

2
, 1 ≤ j ≤ n

Question 3(b) Let A be an n×n matrix with distinct eigenvalues λ1, . . . , λn. Show that if
A is non-singular then there exist 2n matrices X such that X2 = A. What happens in case
A is a singular matrix?

Solution. There exists P non-singular such that P−1AP = diagonal[λ1, . . . , λn].
Let Y1 = diagonal[

√
λ1, . . . ,

√
λn], and let X = PYP−1. Then X2 = PYP−1PYP−1 =

PY2P
−1

= A. Thus any of the 2n matrices formed by choosing a sign for each of the
diagonal entries from X = P diagonal[±

√
λ1, . . . ,±

√
λn] P−1 has the same property (note

that they are all distinct).
If one of the eigenvalues is zero, the number of matrices X would become 2n−1, since we

would have one less choice.

Question 3(c) Show that a real quadratic x′Ax is positive definite if and only if there exists
a non-singular matrix B such that A = B′B.

Solution. If A = B′B, then x′Ax = x′B′Bx = X′X, where X = Bx. Now if x 6= 0, then
Bx 6= 0, as B is nonsingular, and 0 is not its eigenvalue. Thus x′Ax = X′X > 0, so x′Ax
is positive definite.

Conversely, see the result used in the solution of question 2(c), year 1992.
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