UPSC Civil Services Main 1991 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question $\mathbf{1}(\mathbf{a})$ Let $\mathcal{V}(\mathbb{R})$ be the real vector space of all 2×3 matrices with real entries. Find a basis of $\mathcal{V}(\mathbb{R})$. What is the dimension of $\mathcal{V}(\mathbb{R})$.

Solution. Let $\mathbf{A}_{\mathbf{1}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \mathbf{A}_{\mathbf{2}}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \mathbf{A}_{\mathbf{3}}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
and $\mathbf{B}_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), \mathbf{B}_{\mathbf{2}}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \mathbf{B}_{\mathbf{3}}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. Clearly $\mathbf{A}_{\mathbf{i}}, \mathbf{B}_{\mathbf{i}}, i=1,2,3 \in$ $\mathcal{V}(\mathbb{R})$. These generate $\mathcal{V}(\mathbb{R})$ because

$$
\mathbf{A}=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)=a_{1} \mathbf{A}_{\mathbf{1}}+a_{2} \mathbf{A}_{\mathbf{2}}+a_{3} \mathbf{A}_{\mathbf{3}}+b_{1} \mathbf{B}_{\mathbf{1}}+b_{2} \mathbf{B}_{\mathbf{2}}+b_{3} \mathbf{B}_{\mathbf{3}}
$$

for any arbitrary element $\mathbf{A} \in \mathcal{V}(\mathbb{R})$.
They are linearly independent because if the RHS in the above equation was equal to $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, then $a_{i}=0, b_{i}=0$ for $i=1,2,3$. Thus $\mathbf{A}_{\mathbf{i}}, \mathbf{B}_{\mathbf{i}}, i=1,2,3$ is a basis for $\mathcal{V}(\mathbb{R})$ and the dimension of $\mathcal{V}(\mathbb{R})$ is 6 .

Question $\mathbf{1}(\mathbf{b})$ Let \mathbb{C} be the field of complex numbers and let \mathbf{T} be the function from \mathbb{C}^{3} to \mathbb{C}^{3} defined by

$$
\mathbf{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, 2 x_{1}+x_{2},-x_{1}-2 x_{2}+2 x_{3}\right)
$$

1. Verify that \mathbf{T} is a linear transformation.
2. If $(a, b, c) \in \mathbb{C}^{3}$, what are the conditions on a, b, c so that (a, b, c) is in the range of \mathbf{T} ? What is the rank of \mathbf{T} ?
3. What are the conditions on a, b, c so that (a, b, c) is in the null space of \mathbf{T} ? What is the nullity of \mathbf{T} ?

Solution. $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)=(1,2,-1), \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right)=(-1,1,-2), \mathbf{T}\left(\mathbf{e}_{\mathbf{3}}\right)=(2,0,2)$. Clearly $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)$ and $\mathbf{T}\left(\mathbf{e}_{\boldsymbol{3}}\right)$ are linearly independent. If

$$
(-1,1,2)=\alpha(1,2,-1)+\beta(2,0,2)
$$

then $\alpha+2 \beta=-1,2 \alpha=1,-\alpha+2 \beta=-2$, so $\alpha=\frac{1}{2}, \beta=-\frac{3}{4}$, so $\mathbf{T}\left(\mathbf{e}_{2}\right)$ is a linear combination of $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)$ and $\mathbf{T}\left(\mathbf{e}_{\boldsymbol{3}}\right)$. Thus rank of \mathbf{T} is 2 , nullity of \mathbf{T} is 1 .

If (a, b, c) is in the range of \mathbf{T}, then $(a, b, c)=\alpha(1,2,-1)+\beta(2,0,2)$. Thus $\alpha+2 \beta=$ $a, 2 \alpha=b,-\alpha+2 \beta=c$. From the first two equations, $\alpha=\frac{b}{2}, \beta=\frac{a-\frac{b}{2}}{2}$. The equations would be consistent if $-\frac{b}{2}+a-\frac{b}{2}=c$, or $a=b+c$. So the condition for (a, b, c) to belong to the range of \mathbf{T} is $a=b+c$.

If $(a, b, c) \in$ null space of \mathbf{T}, then $a-b+2 c=0,2 a+b=0,-a-2 b+2 c=0$. Thus $3 a+2 c=0$, so $a=-\frac{2 c}{3}, b=\frac{4 c}{3}$. Thus the conditions for (a, b, c) to belong to the null space of \mathbf{T} are $3 a+2 c=0,3 b=4 c$. Thus the null space consists of the vectors $\left\{\left.\left(-\frac{2 c}{3}, \frac{4 c}{3}, c\right) \right\rvert\, c \in \mathbb{R}\right\}$, showing that the nullity of \mathbf{T} is 1 .

Question 1(c) If $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$, express $\mathbf{A}^{6}-4 \mathbf{A}^{5}+8 \mathbf{A}^{4}-12 \mathbf{A}^{3}+14 \mathbf{A}^{2}$ as a linear polynomial in A.

Solution. Characteristic polynomial of \mathbf{A} is $\left|\begin{array}{c}1-\lambda \\ \hline 1 \\ 3-\lambda\end{array}\right|=(\lambda-3)(\lambda-1)-2=\lambda^{2}-4 \lambda+1$. By the Cayley Hamilton theorem, $\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}=\mathbf{0}$. Dividing the given polynomial by $\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}$, we have

$$
\begin{aligned}
& \mathbf{A}^{6}-4 \mathbf{A}^{5}+8 \mathbf{A}^{4}-12 \mathbf{A}^{3}+14 \mathbf{A}^{2} \\
= & \mathbf{A}^{4}\left(\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}\right)+7 \mathbf{A}^{4}-12 \mathbf{A}^{3}+14 \mathbf{A}^{2} \\
= & \left(\mathbf{A}^{4}+7 \mathbf{A}^{2}\right)\left(\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}\right)+16 \mathbf{A}^{3}+7 \mathbf{A}^{2} \\
= & \left(\mathbf{A}^{4}+7 \mathbf{A}^{2}+16 \mathbf{A}\right)\left(\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}\right)+71 \mathbf{A}^{2}-16 \mathbf{A} \\
= & \left(\mathbf{A}^{4}+7 \mathbf{A}^{2}+16 \mathbf{A}+71 \mathbf{I}\right)\left(\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}\right)+268 \mathbf{A}-71 \mathbf{I}
\end{aligned}
$$

Since $\mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I}=\mathbf{0}, \mathbf{A}^{6}-4 \mathbf{A}^{5}+8 \mathbf{A}^{4}-12 \mathbf{A}^{3}+14 \mathbf{A}^{2}=268 \mathbf{A}-71 \mathbf{I}$.
Question 2(a) Let $\mathbf{T}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a linear transformation defined by $\mathbf{T}\left(x_{1}, x_{2}\right)=$ $\left(-x_{2}, x_{1}\right)$.

1. What is the matrix of \mathbf{T} in the standard basis of \mathbb{R}^{2} ?
2. What is the matrix of \mathbf{T} in the ordered basis $\mathcal{B}=\left\{\alpha_{\mathbf{1}}, \alpha_{\mathbf{2}}\right\}$ where $\alpha_{\mathbf{1}}=(1,2), \alpha_{\mathbf{2}}=$ $(1,-1)$?

Solution. $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)=(0,1)=\mathbf{e}_{\mathbf{2}}, \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right)=(-1,0)=-\mathbf{e}_{\mathbf{1}}$. Thus $\left(\mathbf{T}\left(\mathbf{e}_{1}\right), \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right)\right)=$ $\left(\mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{2}}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. So the matrix of \mathbf{T} in the standard basis is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
$\mathbf{T}\left(\alpha_{1}\right)=(-2,1), \mathbf{T}\left(\alpha_{\mathbf{2}}\right)=(1,1)$. If $(a, b)=x \alpha_{\mathbf{1}}+y \alpha_{\mathbf{2}}$, then $x+y=a, 2 x-y=b$, so $x=\frac{a+b}{3}, y=\frac{2 a-b}{3}$. This shows that

$$
\begin{aligned}
& \mathbf{T}\left(\alpha_{1}\right)=(-2,1)=-\frac{1}{3} \alpha_{1}-\frac{5}{3} \alpha_{\mathbf{2}} \\
& \mathbf{T}\left(\alpha_{2}\right)=(1,1)=\frac{2}{3} \alpha_{1}+\frac{1}{3} \alpha_{\mathbf{2}}
\end{aligned}
$$

Thus $\left(\mathbf{T}\left(\alpha_{1}\right) \mathbf{T}\left(\alpha_{2}\right)\right)=\left(\alpha_{1} \alpha_{\mathbf{2}}\right)\left(\begin{array}{cc}-\frac{1}{3} & \frac{2}{3} \\ -\frac{5}{3} & \frac{1}{3}\end{array}\right)$. Consequently the matrix of \mathbf{T} in the ordered basis \mathcal{B} is $\left(\begin{array}{ll}-\frac{1}{3} & \frac{2}{3} \\ -\frac{5}{3} & \frac{1}{3}\end{array}\right)$.

Question 2(b) Determine a non-singular matrix \mathbf{P} such that $\mathbf{P}^{\prime} \mathbf{A P}$ is a diagonal matrix, where $\mathbf{A}=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0\end{array}\right)$. Is the matrix congruent to a diagonal matrix? Justify your answer.
Solution. The quadratic form associated with \mathbf{A} is $Q(x, y, z)=2 x y+4 x z+6 y z$. Let $x=X, y=X+Y, z=Z$ (thus $X=x, Y=y-x, Z=z$). Then

$$
\begin{aligned}
Q(X, Y, Z) & =2 X^{2}+2 X Y+4 X Z+6 X Z+6 Y Z \\
& =2 X^{2}+2 X Y+10 X Z+6 Y Z \\
& =2\left(X+\frac{Y}{2}+\frac{5}{2} Z\right)^{2}-\frac{Y^{2}}{2}-\frac{25}{2} Z^{2}+Y Z \\
& =2\left(X+\frac{Y}{2}+\frac{5}{2} Z\right)^{2}-\frac{1}{2}(Y-Z)^{2}-12 Z^{2}
\end{aligned}
$$

Put

$$
\begin{gathered}
\xi=X+\frac{Y}{2}+\frac{5}{2} Z=\frac{x}{2}+\frac{y}{2}+\frac{5 z}{2} \\
\eta=Y-Z=-x+y-z \\
\zeta=Z=z \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\
-1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -3 \\
1 & \frac{1}{2} & -2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)
\end{gathered}
$$

$Q(x, y, z)$ transforms to $2 \xi^{2}-\frac{1}{2} \eta^{2}-12 \zeta^{2}$. Thus

$$
\mathbf{P}^{\prime} \mathbf{A P}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & -12
\end{array}\right)
$$

with $\mathbf{P}=\left(\begin{array}{ccc}1 & -\frac{1}{2} & -3 \\ 1 & \frac{1}{2} & -2 \\ 0 & 0 & 1\end{array}\right)$ Clearly \mathbf{A} is congruent to a diagonal matrix as shown above.

Question 2(c) Reduce the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 4 & -5 \\
-2 & -5 & -10 & 16 \\
5 & 9 & 33 & -68 \\
4 & 7 & 30 & -78
\end{array}\right)
$$

to echelon form by elementary row transformations.
Solution. Let the given matrix be \mathbf{A}. Operations $\mathbf{R}_{2}+2 \mathbf{R}_{1}, \mathbf{R}_{3}-5 \mathbf{R}_{1}, \mathbf{R}_{4}-4 \mathbf{R}_{1} \Rightarrow$

$$
\mathbf{A} \approx\left(\begin{array}{cccc}
1 & 3 & 4 & -5 \\
0 & 1 & -2 & 6 \\
0 & -6 & 13 & -43 \\
0 & -5 & 14 & -58
\end{array}\right)
$$

Operations $\mathbf{R}_{3}+6 \mathbf{R}_{2}, \mathbf{R}_{4}+5 \mathbf{R}_{2} \Rightarrow$

$$
\mathbf{A} \approx\left(\begin{array}{cccc}
1 & 3 & 4 & -5 \\
0 & 1 & -2 & 6 \\
0 & 0 & 1 & -7 \\
0 & 0 & 4 & -28
\end{array}\right)
$$

Operations $\mathbf{R}_{4}-4 \mathbf{R}_{3} \Rightarrow$

$$
\mathbf{A} \approx\left(\begin{array}{cccc}
1 & 3 & 4 & -5 \\
0 & 1 & -2 & 6 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Operation $\mathbf{R}_{1}-3 \mathbf{R}_{2} \Rightarrow$

$$
\mathbf{A} \approx\left(\begin{array}{cccc}
1 & 0 & 10 & -23 \\
0 & 1 & -2 & 6 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Operations $\mathbf{R}_{1}-10 \mathbf{R}_{3}, \mathbf{R}_{2}+2 \mathbf{R}_{3} \Rightarrow$

$$
\mathbf{A} \approx\left(\begin{array}{cccc}
1 & 0 & 0 & 47 \\
0 & 1 & 0 & -8 \\
0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

which is the required row echelon form. The rank of \mathbf{A} is 3 .

Question 3(a) \mathbf{U} is an n-rowed unitary matrix such that $|\mathbf{I}-\mathbf{U}| \neq 0$, show that the matrix \mathbf{H} defined by $i \mathbf{H}=(\mathbf{I}+\mathbf{U})(\mathbf{I}-\mathbf{U})^{-1}$ is Hermitian. If $e^{i \alpha_{1}}, \ldots, e^{i \alpha_{n}}$ are the eigenvalues of \mathbf{U} then $\cot \frac{\alpha_{1}}{2}, \ldots, \cot \frac{\alpha_{n}}{2}$ are eigenvalues of \mathbf{H}.

Solution.

$$
\begin{aligned}
(i \mathbf{H})(\mathbf{I}-\mathbf{U}) & =(\mathbf{I}+\mathbf{U}) \\
\Rightarrow\left(\mathbf{I}-\overline{\mathbf{U}}^{\prime} \overline{(i \mathbf{H})^{\prime}}\right. & =\left(\mathbf{I}+\overline{\mathbf{U}}^{\prime}\right)
\end{aligned}
$$

Substituting $\mathbf{I}=\overline{\mathbf{U}}^{\prime} \mathbf{U}$, we have from the second equation that $\overline{\mathbf{U}}^{\prime}(\mathbf{U}-\mathbf{I}) \overline{(i \mathbf{H})}^{\prime}=\overline{\mathbf{U}}^{\prime}(\mathbf{U}+\mathbf{I})$. So $\overline{(i \mathbf{H})}^{\prime}=-i \overline{\mathbf{H}}^{\prime}=-(\mathbf{I}+\mathbf{U})(\mathbf{I}-\mathbf{U})^{-1}=-i \mathbf{H}$, so $\overline{\mathbf{H}}^{\prime}=\mathbf{H}$, thus \mathbf{H} is Hermitian.

If an eigenvalue of a nonsingular matrix \mathbf{A} is λ, then λ^{-1} is an eigenvalue of $\mathbf{A}^{-1} \because \mathbf{A} \mathbf{x}=$ $\lambda \mathbf{x} \Rightarrow \lambda^{-1} \mathbf{x}=\mathbf{A}^{-1} \mathbf{x}$, note that $\lambda \neq 0 \because|\mathbf{A}| \neq 0$. Thus the eigenvalues of \mathbf{H} are

$$
\begin{aligned}
& \frac{1}{i} \frac{1+e^{i \alpha_{j}}}{1-e^{i \alpha_{j}}}, 1 \leq j \leq n \\
= & -i \frac{e^{i \alpha_{j} / 2}+e^{-i \alpha_{j} / 2}}{e^{-i \alpha_{j} / 2}-e^{i \alpha_{j} / 2}}, 1 \leq j \leq n \\
= & \frac{\frac{e^{i \alpha_{j} / 2}+e^{-i \alpha_{j} / 2}}{2}}{\frac{e^{-i \alpha_{j} / 2}-e^{i \alpha_{j} / 2}}{2 i}}, 1 \leq j \leq n \\
= & \frac{\cot \alpha_{j}}{2}, 1 \leq j \leq n
\end{aligned}
$$

Question 3(b) Let \mathbf{A} be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that if \mathbf{A} is non-singular then there exist 2^{n} matrices \mathbf{X} such that $\mathbf{X}^{2}=\mathbf{A}$. What happens in case A is a singular matrix?
Solution. There exists \mathbf{P} non-singular such that $\mathbf{P}^{-\mathbf{1}} \mathbf{A P}=\operatorname{diagonal}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$.
Let $\mathbf{Y}_{1}=$ diagonal $\left[\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right]$, and let $\mathbf{X}=\mathbf{P Y P} \mathbf{P}^{-1}$. Then $\mathbf{X}^{2}=\mathbf{P Y} \mathbf{P}^{-1} \mathbf{P Y} \mathbf{P}^{-1}=$ $\mathbf{P Y}^{\mathbf{2}} \mathbf{P}^{-1}=\mathbf{A}$. Thus any of the 2^{n} matrices formed by choosing a sign for each of the diagonal entries from $\mathbf{X}=\mathbf{P}$ diagonal $\left[\pm \sqrt{\lambda_{1}}, \ldots, \pm \sqrt{\lambda_{n}}\right] \mathbf{P}^{-1}$ has the same property (note that they are all distinct).

If one of the eigenvalues is zero, the number of matrices \mathbf{X} would become 2^{n-1}, since we would have one less choice.

Question 3(c) Show that a real quadratic $\mathbf{x}^{\prime} \mathbf{A x}$ is positive definite if and only if there exists a non-singular matrix \mathbf{B} such that $\mathbf{A}=\mathbf{B}^{\prime} \mathbf{B}$.

Solution. If $\mathbf{A}=\mathbf{B}^{\prime} \mathbf{B}$, then $\mathbf{x}^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \mathbf{B}^{\prime} \mathbf{B x}=\mathbf{X}^{\prime} \mathbf{X}$, where $\mathbf{X}=\mathbf{B x}$. Now if $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{B x} \neq \mathbf{0}$, as \mathbf{B} is nonsingular, and 0 is not its eigenvalue. Thus $\mathbf{x}^{\prime} \mathbf{A x}=\mathbf{X}^{\prime} \mathbf{X}>0$, so $\mathbf{x}^{\prime} \mathbf{A x}$ is positive definite.

Conversely, see the result used in the solution of question 2(c), year 1992.

