UPSC Civil Services Main 1992 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question $\mathbf{1 (a)}$ Let \mathcal{U} and \mathcal{V} be vector spaces over a field K and let \mathcal{V} be of finite dimension. Let $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{U}$ be a linear transformation, prove that $\operatorname{dim} \mathcal{V}=\operatorname{dim} \mathbf{T}(\mathcal{V})+\operatorname{dim}$ nullity \mathbf{T}.

Solution. See question 3(a), year 1998.
Question 1(b) Let $\mathcal{S}=\{(x, y, z) \mid x+y+z=0, x, y, z \in \mathbb{R}\}$. Prove that \mathcal{S} is a subspace of \mathbb{R}^{3}. Find a basis of \mathcal{S}.

Solution. $\mathcal{S} \neq \emptyset$ because $(0,0,0) \in \mathcal{S}$. If $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \mathcal{S}$ then $\alpha_{1}\left(x_{1}, y_{1}, z_{1}\right)+$ $\alpha_{2}\left(x_{2}, y_{2}, z_{2}\right) \in \mathcal{S}$ because $\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)+\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)+\left(\alpha_{1} z_{1}+\alpha_{2} z_{2}\right)=\alpha_{1}\left(x_{1}+y_{1}+z_{1}\right)+$ $\alpha_{2}\left(x_{2}+y_{2}+z_{2}\right)=0$. Thus \mathcal{S} is a subspace of \mathbb{R}^{3}.

Clearly $(1,0,-1),(1,-1,0) \in \mathcal{S}$ and are linearly independent. Thus $\operatorname{dim} \mathcal{S} \geq 2$. However $(1,1,1) \notin \mathcal{S}$, so $\mathcal{S} \neq \mathbb{R}^{3}$. Thus $\operatorname{dim} \mathcal{S}=2$ and $\{(1,0,-1),(1,-1,0)\}$ is a basis for \mathcal{S}.

Question 1(c) Which of the following are linear transformations?

1. $\mathbf{T}: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ defined by $\mathbf{T}(x)=(2 x,-x)$.
2. $\mathbf{T}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ defined by $\mathbf{T}(x, y)=(x y, y, x)$.
3. $\mathbf{T}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ defined by $\mathbf{T}(x, y)=(x+y, y, x)$.
4. $\mathbf{T}: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ defined by $\mathbf{T}(x)=(1,-1)$.

Solution.

1.

$$
\begin{aligned}
\mathbf{T}(\alpha x+\beta y) & =(2 \alpha x+2 \beta y,-\alpha x-\beta y) \\
& =(2 \alpha x,-\alpha x)+(2 \beta y,-\beta y) \\
& =\alpha \mathbf{T}(x)+\beta \mathbf{T}(y)
\end{aligned}
$$

Thus \mathbf{T} is a linear transformation.
2. $\mathbf{T}(2(1,1))=\mathbf{T}(2,2)=(4,2,2) \neq 2 \mathbf{T}(1,1)=2(1,1,1)$ Thus \mathbf{T} is not a linear transformation.
3.

$$
\begin{aligned}
\mathbf{T}\left(\alpha\left(x_{1}, y_{1}\right)+\beta\left(x_{2}+y_{2}\right)\right) & =\mathbf{T}\left(\alpha x_{1}+\beta x_{2}, \alpha y_{1}+\beta y_{2}\right) \\
& =\left(\alpha x_{1}+\beta x_{2}+\alpha y_{1}+\beta y_{2}, \alpha y_{1}+\beta y_{2}, \alpha x_{1}+\beta x_{2}\right) \\
& =\alpha\left(x_{1}+y_{1}, y_{1}, x_{1}\right)+\beta\left(x_{2}+y_{2}, y_{2}, x_{2}\right) \\
& =\alpha \mathbf{T}\left(x_{1}, y_{1}\right)+\beta \mathbf{T}\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Thus \mathbf{T} is a linear transformation.
4. $\mathbf{T}(2(0,0))=\mathbf{T}(0,0)=(1,-1) \neq 2 \mathbf{T}(0,0)$ Thus \mathbf{T} is not a linear transformation.

Question 2(a) Let $\mathbf{T}: \mathcal{M}_{2,1} \longrightarrow \mathcal{M}_{2,3}$ be a linear transformation defined by (with the usual notation)

$$
\mathbf{T}\binom{1}{0}=\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 1 & 5
\end{array}\right), \mathbf{T}\binom{1}{1}=\left(\begin{array}{lll}
6 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Find $\mathbf{T}\binom{x}{y}$.

Solution.

$$
\begin{aligned}
\binom{x}{y} & =x\binom{1}{0}-y\binom{1}{0}+y\binom{1}{1} \\
\mathbf{T}\binom{x}{y} & =(x-y)\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 1 & 5
\end{array}\right)+y\left(\begin{array}{lll}
6 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{ccc}
2 x+4 y & x & 3 x-3 y \\
4 x-4 y & x-y & 5 x-3 y
\end{array}\right)
\end{aligned}
$$

Question 2(b) For what values of η do the following equations

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+4 z & =\eta \\
x+4 y+10 z & =\eta^{2}
\end{aligned}
$$

have a solution? Solve them in each case.
Solution. Since the determinant of the coefficient matrix $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 0\end{array}\right)$ is 0 , the system has to be consistent to be solvable.

Clearly $x+4 y+10 z=3(x+2 y+4 z)-2(x+y+z)$. Thus for the system to be consistent we must have $\eta^{2}=3 \eta-2$, or $\eta=1,2$.

If $\eta=1$, then $x+y+z=1, x+2 y+4 z=1$ so $y+3 z=0$, or $y=-3 z, x=1+2 z$. Thus the space of solutions is $\{(1+2 z,-3 z, z) \mid z \in \mathbb{R}\}$. Note that the rank of the coefficient matrix is 2 , and consequently the space of solutions is one dimensional.

If $\eta=2$, then $x+y+z=1, x+2 y+4 z=2$, so $y+3 z=1$ or $y=1-3 z$, hence $x=2 z$. Consequently, the space of solutions is $\{(2 z, 1-3 z, z) \mid z \in \mathbb{R}\}$.

Question 2(c) Prove that a necessary and sufficient condition of a real quadratic form $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$ to be positive definite is that the leading principal minors of \mathbf{A} are all positive.

Solution. Let all the principal minors be positive. We have to prove that the quadratic form is positive definite. We prove the result by induction.

If $n=1$, then $a_{11} x^{2}>0 \Leftrightarrow a_{11}>0$. Suppose as induction hypothesis the result is true for $n=m$. Let $\mathbf{S}=\left(\begin{array}{cc}\left.\begin{array}{cc}\mathbf{B} & \mathbf{B}_{1} \\ \mathbf{B}_{1}^{\prime} & k\end{array}\right) \text { be a matrix of a quadratic form in } m+1 \text { variables, where }\end{array}\right.$ \mathbf{B} is $m \times m, \mathbf{B}_{1}$ is $m \times 1$ and k is a single element. Since all principle minors of \mathbf{B} are leading principal minors of \mathbf{S}, and are hence positive, the induction hypothesis gives that \mathbf{B} is positive definite. This means that there exists a non-singular $m \times m$ matrix \mathbf{P} such that $\mathbf{P}^{\prime} \mathbf{B P}=\mathbf{I}_{m}$ (We shall prove this presently). Let \mathbf{C} be an m-rowed column to be determined soon. Then

$$
\left(\begin{array}{ll}
\mathbf{P}^{\prime} & \mathbf{0} \\
\mathbf{C}^{\prime} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{B} & \mathbf{B}_{1} \\
\mathbf{B}_{1}^{\prime} & k
\end{array}\right)\left(\begin{array}{cc}
\mathbf{P} & \mathbf{C} \\
\mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{P}^{\prime} \mathbf{B} \mathbf{P} & \mathbf{P}^{\prime} \mathbf{B C}+\mathbf{P}^{\prime} \mathbf{B}_{1} \\
\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{P}+\mathbf{B}_{\mathbf{1}}^{\prime} \mathbf{P} & \mathbf{C}^{\prime} \mathbf{B C}+\mathbf{C}^{\prime} \mathbf{B}_{1}+\mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k
\end{array}\right)
$$

Let \mathbf{C} be so chosen that $\mathbf{B C}+\mathbf{B}_{1}=\mathbf{0}$, or $\mathbf{C}=-\mathbf{B}^{-1} \mathbf{B}_{1}$. Then

$$
\left(\begin{array}{ll}
\mathbf{P}^{\prime} & \mathbf{0} \\
\mathbf{C}^{\prime} & 1
\end{array}\right)\left(\begin{array}{cc}
\mathbf{B} & \mathbf{B}_{1} \\
\mathbf{B}_{1}^{\prime} & k
\end{array}\right)\left(\begin{array}{cc}
\mathbf{P} & \mathbf{C} \\
\mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{P}^{\prime} \mathbf{B P} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k
\end{array}\right)
$$

Taking determinants, we get $\left|\mathbf{P}^{\prime}\right||\mathbf{S}||\mathbf{P}|=\mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k$, because $\mathbf{P}^{\prime} \mathbf{B P}=\mathbf{I}_{m}$, and $\mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k$ is a single element. Since $|\mathbf{S}|>0$, it follows that $\mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k>0$, so let $\mathbf{B}^{\prime}{ }_{1} \mathbf{C}+k=\alpha^{2}$. Then $\mathbf{Q}^{\prime} \mathbf{S Q}=\mathbf{I}_{m+1}$ with $\mathbf{Q}=\left(\begin{array}{cc}\mathbf{P} & \mathbf{C} \\ \mathbf{0} & 1\end{array}\right)\left(\begin{array}{cc}\mathbf{I}_{m} & \mathbf{0} \\ \mathbf{0} & \alpha^{-1}\end{array}\right)$. Thus the quadratic forms of \mathbf{S} and \mathbf{I}_{m+1} take the same values. Hence \mathbf{S} is positive definite, so the condition is sufficient.

The condition is necessary - Since $\mathbf{x}^{\prime} \mathbf{A x}$ is positive definite, there is a non-singular matrix \mathbf{P} such that $\mathbf{P}^{\prime} \mathbf{A P}=\mathbf{I} \Rightarrow|\mathbf{A} \| \mathbf{P}|^{2}=1 \Rightarrow|\mathbf{A}|>0$.

Let $1 \leq r<n$. Let $x_{r+1}=\ldots=x_{n}=0$, then we obtain a quadratic form in r variables which is positive definite. Clearly the determinant of this quadratic form is the $r \times r$ principal minor of \mathbf{A} which shows the result.

Proof of the result used: Let \mathbf{A} be positive definite, then there exists a non-singular \mathbf{P} such that $\mathbf{P}^{\prime} \mathbf{A P}=\mathbf{I}$.

We will prove this by induction. If $n=1$, then the form corresponding to \mathbf{A} is $a_{11} x^{2}$ and $a_{11}>0$, so that $\mathbf{P}=\left(\sqrt{a_{11}}\right)$.

Take

$$
\left.\mathbf{P}_{\mathbf{1}}=\left(\begin{array}{cccc}
1 & -a_{11}^{-1} a_{12} & 0 & \ldots
\end{array}\right) 00 \begin{array}{ccc}
0 & & \\
\vdots & & \\
0 & & (n-1) \times(n-1)
\end{array}\right)
$$

then

$$
\mathbf{P}_{\mathbf{1}}^{\prime} \mathbf{A P}_{\mathbf{1}}=\left(\begin{array}{ccccc}
a_{11} & 0 & a_{13} & \ldots & a_{1 n} \\
0 & & & & \\
a_{13} & & & & \\
\vdots & & & (n-1) \times(n-1) & \\
a_{1 n} & & &
\end{array}\right)
$$

Repeating this process, we get a non-singular \mathbf{Q} such that

$$
\mathbf{Q}^{\prime} \mathbf{A} \mathbf{Q}=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
\vdots & & (n-1) \times(n-1) & \\
0 & & &
\end{array}\right)
$$

Given the $(n-1) \times(n-1)$ matrix on the lower right, we get by induction \mathbf{P}^{*} s.t. $\mathbf{P}^{* \prime}((n-$ $1) \times(n-1)$ matrix $) \mathbf{P}^{*}$ is diagonal. Thus $\exists \mathbf{P},|\mathbf{P}| \neq 0, \mathbf{P}^{\prime} \mathbf{A P}=\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ say. Take $\mathbf{R}=$ diagonal $\left[\sqrt{\alpha_{1}}, \ldots, \sqrt{\alpha_{n}}\right]$, then $\mathbf{R}^{\prime} \mathbf{P}^{\prime} \mathbf{A P R}=\mathbf{I}_{\mathbf{n}}$.

Question 3(a) State the Cayley-Hamilton theorem and use it to find the inverse of $\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$.
Solution. Let \mathbf{A} be an $n \times n$ matrix. If $|\lambda \mathbf{I}-\mathbf{A}|=\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0$ is the characteristic equation of \mathbf{A}, then the Cayley-Hamilton theorem says that $\mathbf{A}^{n}+a_{1} \mathbf{A}^{n-1}+$ $\ldots+a_{n} \mathbf{I}=\mathbf{0}$ i.e. a matrix satisfies its characteristic equation.

The characteristic equation of $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$ is

$$
\left|\begin{array}{cc}
2-\lambda & 1 \\
4 & 3-\lambda
\end{array}\right|=\lambda^{2}-5 \lambda+2=0
$$

By the Cayley-Hamilton theorem, $\mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}=\mathbf{0}$, so $\mathbf{A}(\mathbf{A}-5 \mathbf{I})=-2 \mathbf{I}$, thus $\mathbf{A}^{-1}=$ $-\frac{1}{2}(\mathbf{A}-5 \mathbf{I})$. Thus

$$
\mathbf{A}^{-1}=-\frac{1}{2}\left[\left(\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right)-\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)\right]=\left(\begin{array}{cc}
\frac{3}{2} & -\frac{1}{2} \\
-2 & 1
\end{array}\right)
$$

Question 3(b) Transform the following into diagonal form

$$
x^{2}+2 x y, 8 x^{2}-4 x y+5 y^{2}
$$

and give the transformation employed.
Solution. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}8 & -2 \\ -2 & 5\end{array}\right)$

$$
\text { Let } 0=|\mathbf{A}-\lambda \mathbf{B}|=\left|\begin{array}{cc}
1-8 \lambda & 1+2 \lambda \\
1+2 \lambda & -5 \lambda
\end{array}\right|=-5 \lambda+40 \lambda^{2}-4 \lambda^{2}-4 \lambda-1
$$

Thus $36 \lambda^{2}-9 \lambda-1=0$, so $\lambda=\frac{9 \pm \sqrt{81+144}}{72}=\frac{1}{3},-\frac{1}{12}$.
Let $\left(x_{1}, x_{2}\right)$ be the vector such that $(\mathbf{A}-\lambda \mathbf{B})\binom{x_{1}}{x_{2}}=\mathbf{0}$ with $\lambda=\frac{1}{3}$. Thus $-\frac{5}{3} x_{1}+\frac{5}{3} x_{2}=$ $0 \Rightarrow x_{1}=x_{2}$. We take $\mathbf{x}_{\mathbf{1}}=\binom{1}{1}$ so that $(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}_{\mathbf{1}}=\mathbf{0}$ with $\lambda=\frac{1}{3}$. Similarly, if $\left(x_{1}, x_{2}\right)$ is the vector such that $(\mathbf{A}-\lambda \mathbf{B})\binom{x_{1}}{x_{2}}=\mathbf{0}$ with $\lambda=-\frac{1}{12}$, then $\frac{5}{3} x_{1}+\frac{5}{6} x_{2}=0$, so $2 x_{1}+x_{2}=0$. We take $\mathbf{x}_{\mathbf{2}}=\binom{1}{-2}$.

Now

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{x}_{\mathbf{1}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{2}{1}=3 \\
& \mathbf{x}_{\mathbf{2}}^{\prime} \mathbf{A} \mathbf{x}_{\mathbf{2}}=\left(\begin{array}{ll}
1 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-2}=\left(\begin{array}{ll}
1-2
\end{array}\right)\binom{-1}{1}=-3 \\
& \mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{A} \mathbf{x}_{\mathbf{2}} \\
& \left(\begin{array}{lll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{1}{-2}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{-1}{1}=0
\end{aligned}
$$

If $\mathbf{P}=\left(\mathbf{x}_{\mathbf{1}} \mathbf{x}_{\mathbf{2}}\right)$, then $\mathbf{P}^{\prime} \mathbf{A P}=\left(\begin{array}{cc}3 & 0 \\ 0 & -3\end{array}\right)$, thus $x^{2}+2 x y \approx 3 X^{2}-3 Y^{2}$ by $\mathbf{P}=\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)$.
Similarly

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{B} \mathbf{x}_{\mathbf{1}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
8 & -2 \\
-2 & 5
\end{array}\right)\binom{1}{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{6}{3}=9 \\
& \mathbf{x}_{\mathbf{2}}^{\prime} \mathbf{B} \mathbf{x}_{\mathbf{2}}=\left(\begin{array}{ll}
1 & -2
\end{array}\right)\left(\begin{array}{c}
8 \\
-2 \\
-2
\end{array}\right)\binom{1}{-2}=\left(\begin{array}{l}
1-2
\end{array}\right)\binom{12}{-12}=36 \\
& \mathbf{x}_{\mathbf{1}}^{\prime} \mathbf{B} \mathbf{x}_{\mathbf{2}}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{c}
8 \\
-2 \\
-2
\end{array}\right)\binom{1}{-2}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{12}{-12}=0
\end{aligned}
$$

Thus $\mathbf{P}^{\prime} \mathbf{B P}=\left(\begin{array}{cc}9 & 0 \\ 0 & 36\end{array}\right)$, so $8 x^{2}-4 x y+5 y^{2}$ is transformed to $9 X^{2}+36 Y^{2}$ by $\binom{X}{Y}=\mathbf{P}\binom{x}{y}$

Question 3(c) Prove that the characteristic roots of a Hermitian matrix are all real, and the characteristic roots of a skew Hermitian matrix are all zero or pure imaginary.

Solution. For Hermitian matrices, see question 2(c), year 1995.
If \mathbf{H} is skew-Hermitian, then $i \mathbf{H}$ is Hermitian, because $\overline{(i \mathbf{H})}=\overline{i \overline{\mathbf{H}}^{\prime}}=-i \overline{\mathbf{H}}^{\prime}=i \mathbf{H}$ as $\mathbf{H}=-\overline{\mathbf{H}}^{\prime}$. Thus the eigenvalues of $i \mathbf{H}$ are real. Therefore the eigenvalues of \mathbf{H} are $-i x$ where $x \in \mathbb{R}$. So they must be 0 (if $x=0$) or pure imaginary.

