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Question 1(a) Let U and V be vector spaces over a field K and let V be of finite dimension.
Let T : V −→ U be a linear transformation, prove that dimV = dim T(V) + dim nullity T.

Solution. See question 3(a), year 1998.

Question 1(b) Let S = {(x, y, z) | x+ y + z = 0, x, y, z ∈ R}. Prove that S is a subspace
of R3. Find a basis of S.

Solution. S 6= ∅ because (0, 0, 0) ∈ S. If (x1, y1, z1), (x2, y2, z2) ∈ S then α1(x1, y1, z1) +
α2(x2, y2, z2) ∈ S because (α1x1 +α2x2) + (α1y1 +α2y2) + (α1z1 +α2z2) = α1(x1 + y1 + z1) +
α2(x2 + y2 + z2) = 0. Thus S is a subspace of R3.

Clearly (1, 0,−1), (1,−1, 0) ∈ S and are linearly independent. Thus dimS ≥ 2. However
(1, 1, 1) 6∈ S, so S 6= R3. Thus dimS = 2 and {(1, 0,−1), (1,−1, 0)} is a basis for S.

Question 1(c) Which of the following are linear transformations?

1. T : R −→ R2 defined by T(x) = (2x,−x).

2. T : R2 −→ R3 defined by T(x, y) = (xy, y, x).

3. T : R2 −→ R3 defined by T(x, y) = (x+ y, y, x).

4. T : R −→ R2 defined by T(x) = (1,−1).

Solution.
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1.

T(αx+ βy) = (2αx+ 2βy,−αx− βy)

= (2αx,−αx) + (2βy,−βy)

= αT(x) + βT(y)

Thus T is a linear transformation.

2. T(2(1, 1)) = T(2, 2) = (4, 2, 2) 6= 2T(1, 1) = 2(1, 1, 1) Thus T is not a linear transfor-
mation.

3.

T(α(x1, y1) + β(x2 + y2)) = T(αx1 + βx2, αy1 + βy2)

= (αx1 + βx2 + αy1 + βy2, αy1 + βy2, αx1 + βx2)

= α(x1 + y1, y1, x1) + β(x2 + y2, y2, x2)

= αT(x1, y1) + βT(x2, y2)

Thus T is a linear transformation.

4. T(2(0, 0)) = T(0, 0) = (1,−1) 6= 2T(0, 0) Thus T is not a linear transformation.

Question 2(a) Let T :M2,1 −→M2,3 be a linear transformation defined by (with the usual
notation)

T

(
1
0

)
=

(
2 1 3
4 1 5

)
,T

(
1
1

)
=

(
6 1 0
0 0 2

)
Find T

(
x
y

)
.

Solution.(
x
y

)
= x

(
1
0

)
− y

(
1
0

)
+ y

(
1
1

)
T

(
x
y

)
= (x− y)

(
2 1 3
4 1 5

)
+ y

(
6 1 0
0 0 2

)
=

(
2x+ 4y x 3x− 3y
4x− 4y x− y 5x− 3y

)
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Question 2(b) For what values of η do the following equations

x+ y + z = 1

x+ 2y + 4z = η

x+ 4y + 10z = η2

have a solution? Solve them in each case.

Solution. Since the determinant of the coefficient matrix
( 1 1 1

1 2 4
1 4 10

)
is 0, the system has to

be consistent to be solvable.
Clearly x+4y+10z = 3(x+2y+4z)−2(x+y+z). Thus for the system to be consistent

we must have η2 = 3η − 2, or η = 1, 2.
If η = 1, then x+ y+ z = 1, x+ 2y+ 4z = 1 so y+ 3z = 0, or y = −3z, x = 1 + 2z. Thus

the space of solutions is {(1 + 2z,−3z, z) | z ∈ R}. Note that the rank of the coefficient
matrix is 2, and consequently the space of solutions is one dimensional.

If η = 2, then x+ y + z = 1, x+ 2y + 4z = 2, so y + 3z = 1 or y = 1− 3z, hence x = 2z.
Consequently, the space of solutions is {(2z, 1− 3z, z) | z ∈ R}.

Question 2(c) Prove that a necessary and sufficient condition of a real quadratic form
x′Ax to be positive definite is that the leading principal minors of A are all positive.

Solution. Let all the principal minors be positive. We have to prove that the quadratic
form is positive definite. We prove the result by induction.

If n = 1, then a11x
2 > 0 ⇔ a11 > 0. Suppose as induction hypothesis the result is true

for n = m. Let S =
( B B1

B′
1 k

)
be a matrix of a quadratic form in m + 1 variables, where

B is m × m, B1 is m × 1 and k is a single element. Since all principle minors of B are
leading principal minors of S, and are hence positive, the induction hypothesis gives that B
is positive definite. This means that there exists a non-singular m×m matrix P such that
P′BP = Im (We shall prove this presently). Let C be an m-rowed column to be determined
soon. Then(

P′ 0
C′ 1

)(
B B1

B′1 k

)(
P C
0 1

)
=

(
P′BP P′BC + P′B1

C′B′P + B′1P C′BC + C′B1 + B′1C + k

)
Let C be so chosen that BC + B1 = 0, or C = −B−1B1. Then(

P′ 0
C′ 1

)(
B B1

B′1 k

)(
P C
0 1

)
=

(
P′BP 0

0 B′1C + k

)
Taking determinants, we get |P′||S||P| = B′1C + k, because P′BP = Im, and B′1C + k is
a single element. Since |S| > 0, it follows that B′1C + k > 0, so let B′1C + k = α2. Then

Q′SQ = Im+1 with Q =

(
P C
0 1

)(
Im 0
0 α−1

)
. Thus the quadratic forms of S and Im+1 take

the same values. Hence S is positive definite, so the condition is sufficient.
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The condition is necessary - Since x′Ax is positive definite, there is a non-singular matrix
P such that P′AP = I⇒ |A||P|2 = 1⇒ |A| > 0.

Let 1 ≤ r < n. Let xr+1 = . . . = xn = 0, then we obtain a quadratic form in r variables
which is positive definite. Clearly the determinant of this quadratic form is the r×r principal
minor of A which shows the result.

Proof of the result used: Let A be positive definite, then there exists a non-singular P
such that P′AP = I.

We will prove this by induction. If n = 1, then the form corresponding to A is a11x
2 and

a11 > 0, so that P = (
√
a11).

Take

P1 =


1 −a−1

11 a12 0 . . . 0
0
... (n− 1)× (n− 1)
0


then

P′1AP1 =


a11 0 a13 . . . a1n

0
a13
... (n− 1)× (n− 1)
a1n


Repeating this process, we get a non-singular Q such that

Q′AQ =

a11 0 . . . 0
... (n− 1)× (n− 1)
0


Given the (n− 1)× (n− 1) matrix on the lower right, we get by induction P∗ s.t. P∗′((n−
1) × (n − 1) matrix)P∗ is diagonal. Thus ∃P, |P| 6= 0,P′AP = [α1, . . . , αn] say. Take R =
diagonal[

√
α1, . . . ,

√
αn], then R′P′APR = In.

Question 3(a) State the Cayley-Hamilton theorem and use it to find the inverse of
(

2 1
4 3

)
.

Solution. Let A be an n × n matrix. If |λI − A| = λn + a1λ
n−1 + . . . + an = 0 is the

characteristic equation of A, then the Cayley-Hamilton theorem says that An + a1A
n−1 +

. . .+ anI = 0 i.e. a matrix satisfies its characteristic equation.
The characteristic equation of A =

(
2 1
4 3

)
is∣∣∣∣2− λ 1

4 3− λ

∣∣∣∣ = λ2 − 5λ+ 2 = 0
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By the Cayley-Hamilton theorem, A2 − 5A + 2I = 0, so A(A − 5I) = −2I, thus A−1 =
−1

2
(A− 5I). Thus

A−1 = −1

2

[(
2 1
4 3

)
−
(

5 0
0 5

)]
=

(
3
2
−1

2

−2 1

)

Question 3(b) Transform the following into diagonal form

x2 + 2xy, 8x2 − 4xy + 5y2

and give the transformation employed.

Solution. Let A =
(

1 1
1 0

)
,B =

(
8 −2
−2 5

)
Let 0 = |A− λB| =

∣∣∣∣1− 8λ 1 + 2λ
1 + 2λ −5λ

∣∣∣∣ = −5λ+ 40λ2 − 4λ2 − 4λ− 1

Thus 36λ2 − 9λ− 1 = 0, so λ = 9±
√

81+144
72

= 1
3
,− 1

12
.

Let (x1, x2) be the vector such that (A− λB)
(

x1
x2

)
= 0 with λ = 1

3
. Thus −5

3
x1 + 5

3
x2 =

0⇒ x1 = x2. We take x1 =
(

1
1

)
so that (A−λB)x1 = 0 with λ = 1

3
. Similarly, if (x1, x2) is

the vector such that (A− λB)
(

x1
x2

)
= 0 with λ = − 1

12
, then 5

3
x1 + 5

6
x2 = 0, so 2x1 + x2 = 0.

We take x2 =
(

1
−2

)
.

Now

x′1Ax1 = ( 1 1 )
(

1 1
1 0

)(
1
1

)
= ( 1 1 )

(
2
1

)
= 3

x′2Ax2 = ( 1 −2 )
(

1 1
1 0

)(
1
−2

)
= ( 1 −2 )

(
−1
1

)
= −3

x′1Ax2 = ( 1 1 )
(

1 1
1 0

)(
1
−2

)
= ( 1 1 )

(
−1
1

)
= 0

If P = (x1 x2), then P′AP =
(

3 0
0 −3

)
, thus x2 + 2xy ≈ 3X2 − 3Y 2 by P =

(
1 1
1 −2

)
.

Similarly

x′1Bx1 = ( 1 1 )
(

8 −2
−2 5

)(
1
1

)
= ( 1 1 )

(
6
3

)
= 9

x′2Bx2 = ( 1 −2 )
(

8 −2
−2 5

)(
1
−2

)
= ( 1 −2 )

(
12
−12

)
= 36

x′1Bx2 = ( 1 1 )
(

8 −2
−2 5

)(
1
−2

)
= ( 1 1 )

(
12
−12

)
= 0

Thus P′BP =
(

9 0
0 36

)
, so 8x2− 4xy+ 5y2 is transformed to 9X2 + 36Y 2 by

(
X
Y

)
= P

(
x
y

)
Question 3(c) Prove that the characteristic roots of a Hermitian matrix are all real, and
the characteristic roots of a skew Hermitian matrix are all zero or pure imaginary.

Solution. For Hermitian matrices, see question 2(c), year 1995.

If H is skew-Hermitian, then iH is Hermitian, because (iH) = iH
′

= −iH′ = iH as

H = −H
′
. Thus the eigenvalues of iH are real. Therefore the eigenvalues of H are −ix

where x ∈ R. So they must be 0 (if x = 0) or pure imaginary.
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