UPSC Civil Services Main 1993 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question 1(a) Show that the set $S=\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$ spans the vector space \mathbb{R}^{3} but is not a basis set.

Solution. The vectors $(1,0,0),(0,1,0),(1,1,1)$ are linearly independent, because $\alpha(1,0,0)+$ $\beta(1,1,0)+\gamma(1,1,1)=\mathbf{0} \Rightarrow \alpha+\gamma=0, \beta+\gamma=0, \gamma=0 \Rightarrow \alpha=\beta=\gamma=0$.

Thus $(1,0,0),(1,1,0),(1,1,1)$ is a basis of \mathbb{R}^{3}, as $\operatorname{dim}_{\mathbb{R}} \mathbb{R}^{3}=3$.
Any set containng a basis spans the space, so S spans \mathbb{R}^{3}, but it is not a basis because the four vectors are not linearly independent, in fact $(1,1,0)=(1,0,0)+(0,1,0)$.

Question 1(b) Define rank and nullity of a linear transformation. If \mathcal{V} is a finite dimensional vector space and \mathbf{T} is a linear operator on \mathcal{V} such that $\operatorname{rank} \mathbf{T}^{2}=\operatorname{rank} \mathbf{T}$, then prove that the null space of \mathbf{T} is equal to the null space of \mathbf{T}^{2}, and the intersection of the range space and null space of \mathbf{T} is the zero subspace of \mathcal{V}.

Solution. The dimension of the image space $\mathbf{T}(\mathcal{V})$ is called rank of \mathbf{T}. The dimension of the vector space kernel of $\mathbf{T}=\{\mathbf{v} \mid \mathbf{T}(\mathbf{v})=\mathbf{0}\}$ is called the nullity of \mathbf{T}.

Now $\mathbf{v} \in$ null space of $\mathbf{T} \Rightarrow \mathbf{T}(\mathbf{v})=\mathbf{0} \Rightarrow \mathbf{T}^{2}(\mathbf{v})=\mathbf{0} \Rightarrow \mathbf{v} \in$ null space of \mathbf{T}^{2}. Thus null space of $\mathbf{T} \subseteq$ null space of \mathbf{T}^{2}. But we are given that $\operatorname{rank} \mathbf{T}=\operatorname{rank} \mathbf{T}^{2}$, so therefore nullity of $\mathbf{T}=$ nullity of \mathbf{T}^{2}, because of the nullity theorem $-\operatorname{rank} \mathbf{T}+$ nullity $\mathbf{T}=\operatorname{dim} \mathcal{V}$. Thus null space of $\mathbf{T}=$ null space of \mathbf{T}^{2}.

Finally if $\mathbf{v} \in$ range of \mathbf{T}, and $\mathbf{v} \in$ null space of \mathbf{T}, then $\mathbf{v}=\mathbf{T}(\mathbf{w})$ for some $\mathbf{w} \in \mathcal{V}$. Now

$$
\begin{aligned}
\mathbf{T}^{2}(\mathbf{w})=\mathbf{T}(\mathbf{v}) & \Rightarrow \mathbf{w} \in \text { null space of } \mathbf{T}^{2} \\
& \Rightarrow \mathbf{w} \in \text { null space of } \mathbf{T} \\
& \Rightarrow \mathbf{0}=\mathbf{T}(\mathbf{w})=\mathbf{v}
\end{aligned}
$$

Thus range of $\mathbf{T} \cap$ null space of $\mathbf{T}=\{\mathbf{0}\}$.

Question 1(c) If the matrix of a linear operator \mathbf{T} on \mathbb{R}^{2} relative to the standard basis $\{(1,0),(0,1)\}$ is $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, find the matrix of \mathbf{T} relative to the basis $\mathbf{B}=\{(1,1),(-1,1)\}$.

Solution. Let $\mathbf{v}_{\mathbf{1}}=(1,1), \mathbf{v}_{\mathbf{2}}=(-1,1)$. Then $\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right)=(11)\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=(2,2)=2 \mathbf{v}_{\mathbf{1}}$. $\mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right)=(-11)\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)=(0,0)=\mathbf{0}$. So $\left(\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right), \mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right)=\left(\mathbf{v}_{\mathbf{1}}\right) \mathbf{v}_{\mathbf{2}}\right)\left(\begin{array}{cc}2 & 0 \\ 0 & 0\end{array}\right)$, so the matrix of \mathbf{T} relative to the basis \mathbf{B} is $\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$.

Question 2(a) Prove that the inverse of $\left(\begin{array}{ll}\mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{C}\end{array}\right)$ is $\left(\begin{array}{cc}\mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{C}^{-1} \mathbf{B A}^{-1} & \mathbf{C}^{-1}\end{array}\right)$ where \mathbf{A}, \mathbf{C} are nonsingular matrices. Hence find the inverse of $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$.

Solution.
$\left(\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{C}\end{array}\right)\left(\begin{array}{cc}\mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{C}^{-1} \mathbf{B A}^{-1} & \mathbf{C}^{-1}\end{array}\right)=\left(\begin{array}{cc}\mathbf{I} & \mathbf{0} \\ \mathbf{B A}^{-1}-\mathbf{B} \mathbf{A}^{-1} & \mathbf{I}\end{array}\right)=$ Identity matrix.
$\left(\begin{array}{cc}\mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{C}^{-1} \mathbf{B} \mathbf{A}^{-1} & \mathbf{C}^{-1}\end{array}\right)\left(\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{C}\end{array}\right)=\left(\begin{array}{cc}\mathbf{I} & \mathbf{0} \\ -\mathbf{C}^{-1} \mathbf{B}+\mathbf{C}^{-1} \mathbf{B} & \mathbf{I}\end{array}\right)=$ Identity matrix, which shows the result.

Let $\mathbf{A}=\mathbf{C}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Then $\mathbf{A}^{-1}=\mathbf{C}^{-1}=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$ and $\mathbf{C}^{-1} \mathbf{B A}^{-1}=$ $\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ Thus

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Question 2(b) If \mathbf{A} is an orthogonal matrix with the property that -1 is not an eigenvalue, then show that $\mathbf{A}=(\mathbf{I}-\mathbf{S})(\mathbf{I}+\mathbf{S})^{-1}$ for some skew symmetric matrix \mathbf{S}.

Solution. We want \mathbf{S} skew symmetric such that $\mathbf{A}(\mathbf{I}+\mathbf{S})=\mathbf{I}-\mathbf{S}$ i.e. $\mathbf{A}+\mathbf{A S}=\mathbf{I}-\mathbf{S}$ or $\mathbf{A S}+\mathbf{S}=\mathbf{I}-\mathbf{A}$ or $(\mathbf{I}+\mathbf{A}) \mathbf{S}=\mathbf{I}-\mathbf{A}$. Let $\mathbf{S}=(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}-\mathbf{A})$, note that $\mathbf{I}+\mathbf{A}$ is invertible because if $|\mathbf{I}+\mathbf{A}|=0$, then -1 will be an eigenvalue of \mathbf{A}.

Note that the two factors of \mathbf{S} commute, because $(\mathbf{I}+\mathbf{A})(\mathbf{I}-\mathbf{A})=\mathbf{I}-\mathbf{A}^{2}=(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})$, so $(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1}=(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}-\mathbf{A})$.

Now

$$
\begin{aligned}
\mathbf{S}^{\prime} & =(\mathbf{I}-\mathbf{A})^{\prime}\left((\mathbf{I}+\mathbf{A})^{-1}\right)^{\prime} \\
& =\left(\mathbf{I}-\mathbf{A}^{\prime}\right)\left(\mathbf{I}+\mathbf{A}^{\prime}\right)^{-1} \\
& =\left(\mathbf{A} \mathbf{A}^{\prime}-\mathbf{A}^{\prime}\right)\left(\mathbf{A}^{\prime} \mathbf{A}+\mathbf{A}^{\prime}\right)^{-1} \\
& =(\mathbf{A}-\mathbf{I}) \mathbf{A}^{\prime} \mathbf{A}^{\prime-1}(\mathbf{A}+\mathbf{I})^{-1} \\
& =-(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1} \\
& =-(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}-\mathbf{A}) \\
& =-\mathbf{S}
\end{aligned}
$$

Thus \mathbf{S} is skew symmetric, so $\mathbf{A}=(\mathbf{I}-\mathbf{S})(\mathbf{I}+\mathbf{S})^{-1}$ where $\mathbf{S}=(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}-\mathbf{A})$
Question 2(c) Show that any two eigenvectors corresponding to distinct eigenvalues of (i) Hermitian matrices (ii) unitary matrices are orthogonal.

Solution. We first prove that the eigenvalues of a Hermitian matrix, and therefore of a symmetric matrix, are real.

Let \mathbf{H} be Hermitian, and λ be one of its eigenvalues. Let $\mathbf{x} \neq \mathbf{0}$ be an eigenvector
 $\overline{\mathbf{x}}^{\prime} \mathbf{H x}$, because $\overline{\mathbf{H}}^{\prime}=\mathbf{H}$. Note that $\left(\overline{\mathbf{x}}^{\prime} \mathbf{H} \mathbf{x}\right)^{\prime}=\overline{\mathbf{x}}^{\prime} \mathbf{H} \mathbf{x}$, since it is a single element, therefore $\overline{\mathbf{x}}^{\prime} \mathbf{H x}$ is real. Similarly $\overline{\mathbf{x}}^{\prime} \mathbf{x} \neq 0$ is real, so $\lambda=\frac{\overline{\mathbf{x}}^{\prime} \mathbf{H x}}{\overline{\mathbf{x}}^{\prime} \mathbf{x}}$ is real.

Let \mathbf{H} be Hermitian, $\mathbf{H} \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}, \mathbf{H} \mathbf{x}_{2}=\lambda_{2} \mathbf{x}_{2}$ with $\lambda_{1} \neq \lambda_{2}$. Clearly $\overline{\mathbf{x}}_{2}^{\prime} \mathbf{H} \mathbf{x}_{1}=\lambda_{1} \overline{\mathbf{x}}_{2}^{\prime} \mathbf{x}_{1}$, $\overline{\mathbf{x}}_{1}^{\prime} \mathbf{H} \mathbf{x}_{2}=\lambda_{2} \overline{\mathbf{x}}_{1}^{\prime} \mathbf{x}_{2}$. But $\left.\left(\overline{\overline{\mathbf{x}}_{2}^{\prime} \mathbf{H x}}\right)^{\prime}\right)^{\prime}=\overline{\mathbf{x}}_{1}^{\prime} \overline{\mathbf{H}}^{\prime} \mathbf{x}_{2}=\lambda_{1} \overline{\mathbf{x}}_{1}^{\prime} \mathbf{x}_{2}$. So $\lambda_{2} \overline{\mathbf{x}}_{1}^{\prime} \mathbf{x}_{2}=\overline{\mathbf{x}}_{1}^{\prime} \mathbf{H} \mathbf{x}_{2}=\overline{\mathbf{x}}_{1}^{\prime} \overline{\mathbf{H}}^{\prime} \mathbf{x}_{2}=$ $\lambda_{1} \overline{\mathbf{x}}_{1}^{\prime} \mathbf{x}_{2}$ because $\overline{\mathbf{H}}^{\prime}=\mathbf{H}$. Since $\lambda_{1} \neq \lambda_{2}, \overline{\mathbf{x}}_{1}^{\prime} \mathbf{x}_{2}=0$, so $\mathbf{x}_{1}, \mathbf{x}_{2}$ are orthogonal.

Let \mathbf{U} be unitary, $\mathbf{U} \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}, \mathbf{U x}_{2}=\lambda_{2} \mathbf{x}_{2}$, where λ_{1}, λ_{2} are distinct eigenvalues of \mathbf{U} with corresponding eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$. Thus $\overline{\mathbf{x}}_{2}^{\prime} \overline{\mathbf{U}}^{\prime} \mathbf{U} \mathbf{x}_{1}=\bar{\lambda}_{2} \overline{\mathbf{x}}_{2}^{\prime} \lambda_{1} \mathbf{x}_{1}$. Since $\overline{\mathbf{U}}^{\prime} \mathbf{U}=\mathbf{I}$, $\bar{\lambda}_{2} \overline{\mathbf{x}}_{2}^{\prime} \lambda_{1} \mathbf{x}_{1}=\overline{\mathbf{x}}_{2}^{\prime} \mathbf{x}_{1}$, so $\left(1-\bar{\lambda}_{2} \lambda_{1}\right)\left(\overline{\mathbf{x}}_{2}^{\prime} \mathbf{x}_{1}\right)=0$. But $1-\bar{\lambda}_{2} \lambda_{1}=\bar{\lambda}_{2} \lambda_{2}-\bar{\lambda}_{2} \lambda_{1}=\bar{\lambda}_{2}\left(\lambda_{2}-\lambda_{1}\right) \neq 0^{1}$. Thus $\overline{\mathbf{x}}_{2}^{\prime} \mathbf{x}_{1}=0$, so $\mathbf{x}_{1}, \mathbf{x}_{2}$ are orthogonal.

Question 3(a) A matrix \mathbf{B} of order n is of the form $\lambda \mathbf{A}$, where λ is a scalar and \mathbf{A} has 1 everywhere except the diagonal, which has μ. Find λ, μ so that \mathbf{B} may be orthogonal.

Solution. $\mathbf{A}=\left(\begin{array}{cccc}\mu & 1 & \ldots & 1 \\ 1 & \mu & \ldots & 1 \\ \ldots & & \ldots & \\ 1 & 1 & \ldots & \mu\end{array}\right) . \mathbf{B}=\lambda \mathbf{A}$. Thus

$$
\mathbf{B}^{\prime} \mathbf{B}=\left(\begin{array}{cccc}
\lambda \mu & \lambda & \ldots & \lambda \\
\lambda & \lambda \mu & \ldots & \lambda \\
\ldots & & \ldots & \\
\lambda & \lambda & \ldots & \lambda \mu
\end{array}\right)\left(\begin{array}{cccc}
\lambda \mu & \lambda & \ldots & \lambda \\
\lambda & \lambda \mu & \ldots & \lambda \\
\ldots & & \ldots & \\
\lambda & \lambda & \ldots & \lambda \mu
\end{array}\right)=\mathbf{B B}^{\prime}=\mathbf{B}^{2}
$$

[^0]Clearly each diagonal element of $\mathbf{B B}^{\prime}$ is $\lambda^{2} \mu^{2}+(n-1) \lambda^{2}$, and each nondiagonal element is $2 \lambda^{2} \mu+(n-2) \lambda^{2}$. Thus \mathbf{B} will be orthogonal if $2 \lambda^{2} \mu+(n-2) \lambda^{2}=0, \lambda^{2} \mu^{2}+(n-1) \lambda^{2}=1$. Since $\lambda \neq 0, \mu=\frac{2-n}{2}=1-\frac{n}{2}$, and $\lambda^{2}=\frac{1}{\left(1-\frac{n}{2}\right)^{2}+n-1}=\frac{1}{1-n+\frac{n^{2}}{4}+n-1}=\frac{4}{n^{2}}$, thus $\lambda= \pm \frac{2}{n}$.

Question 3(b) Find the rank of the matrix

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & -1 & 3 & 6 \\
1 & 3 & -3 & -4 \\
5 & 3 & 3 & 11
\end{array}\right)
$$

by reducing it to its normal form.

Solution.

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & -1 & 3 & 6 \\
1 & 3 & -3 & -4 \\
5 & 3 & 3 & 11
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Operation $\mathbf{C}_{\mathbf{2}}+\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{3}}-3 \mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{4}}-6 \mathbf{C}_{\mathbf{1}} \Rightarrow$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 4 & -6 & -10 \\
5 & 8 & -12 & -19
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -3 & -6 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Operation $\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}} \Rightarrow$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & -6 & -10 \\
5 & 8 & -12 & -19
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -3 & -6 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Operation $\mathbf{R}_{\mathbf{3}}-2 \mathbf{R}_{\mathbf{2}} \Rightarrow$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & -6 & -10 \\
5 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -2 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -3 & -6 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Interchanging $\mathbf{C}_{\mathbf{3}}$ and $\mathbf{C}_{\mathbf{4}}$ we get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & -10 & -6 \\
5 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -2 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -6 & -3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$\mathbf{R}_{\mathbf{3}}-5 \mathbf{R}_{\mathbf{1}} \Rightarrow$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & -10 & -6 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & -2 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -6 & -3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Operation $\frac{1}{4} \mathbf{R}_{2} \Rightarrow$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\frac{5}{2} & -\frac{3}{2} \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & \frac{1}{4} & 0 \\
-3 & -2 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -6 & -3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Operation $\mathbf{C}_{\mathbf{3}}+\frac{5}{2} \mathbf{C}_{\mathbf{2}}, \mathbf{C}_{\mathbf{4}}+\frac{3}{2} \mathbf{C}_{\mathbf{2}} \Rightarrow$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & \frac{1}{4} & 0 \\
-3 & -2 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{cccc}
1 & 1 & -\frac{7}{2} & -\frac{3}{2} \\
0 & 1 & \frac{5}{2} & \frac{3}{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus the normal form of \mathbf{A} is $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$ so $\operatorname{rank} A=3 . \quad \mathbf{P}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -\frac{1}{4} & \frac{1}{4} & 0 \\ -3 & -2 & 1\end{array}\right)$ and $\mathbf{Q}=\left(\begin{array}{cccc}1 & 1 & -\frac{7}{2} & -\frac{3}{2} \\ 0 & 1 & \frac{5}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ and PAQ is the normal form.

Question 3(c) Determine the following form as definite, semidefinite or indefinite

$$
2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-4 x_{2} x_{3}-4 x_{3} x_{1}+2 x_{1} x_{2}
$$

Solution. Completing the squares of the given form (say $Q\left(x_{1}, x_{2}, x_{3}\right)$):

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}\right) & =2\left(x_{1}+\frac{1}{2} x_{2}-x_{3}\right)^{2}+\frac{3}{2} x_{2}^{2}+x_{3}^{2}-2 x_{2} x_{3} \\
& =2\left(x_{1}+\frac{1}{2} x_{2}-x_{3}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}+\frac{1}{2} x_{2}^{2}
\end{aligned}
$$

Thus Q can be written as the sum of 3 squares with positive coefficients, so it is positive definite.

[^0]: ${ }^{1}$ We used here the fact that all eigenvalues of a unitary matrix have modulus 1 . If $\mathbf{U x}=\lambda \mathbf{x}$, then $\overline{\mathbf{x}}^{\prime} \overline{\mathbf{U}}^{\prime}=\bar{\lambda} \overline{\mathbf{x}}^{\prime}$. Thus $\overline{\mathbf{x}}^{\prime} \overline{\mathbf{U}}^{\prime} \mathbf{U} \mathbf{x}=\lambda \bar{\lambda} \overline{\mathbf{x}}^{\prime} \mathbf{x}$, so $\overline{\mathbf{x}}^{\prime} \mathbf{x}=\lambda \bar{\lambda} \overline{\mathbf{x}}^{\prime} \mathbf{x}$. Now $\overline{\mathbf{x}}^{\prime} \mathbf{x} \neq 0$, so $\lambda \bar{\lambda}=1$.

