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1 Linear Algebra

Question 1(a) Let T(x1, x2, x3) = (3x1 +x3,−2x1 +x2,−x1 + 2x2 + 4x3) be a linear trans-
formation on R3. What is the matrix of T w.r.t. the standard basis? What is a basis of the
range space of T? What is a basis of the null space of T?

Solution.

T(e1) = T(1, 0, 0) = (3,−2,−1) = 3e1 − 2e2 − e3

T(e2) = T(0, 1, 0) = (0, 1, 2) = e2 + 2e3

T(e3) = T(0, 0, 1) = (1, 0, 4) = e1 + 4e3

T⇐⇒ A =

 3 0 1
−2 1 0
−1 2 4


Clearly T(e2),T(e3) are linearly independent. If (3,−2,−1) = α(0, 1, 2) + β(1, 0, 4), then
β = 3, α = −2, but 2α + 4β 6= −1, so T(e1),T(e2),T(e3) are linearly independent. Thus
(3,−2,−1), (0, 1, 2), (1, 0, 4) is a basis of the range space of T.

Note that T(x1, x2, x3) = 0 ⇔ x1 = x2 = x3 = 0, so the null space of T is {0}, and the
empty set is a basis. Note that the matrix of T is nonsingular, so T(e1),T(e2),T(e3) are
linearly independent.

Question 1(b) Let A be a square matrix of order n. Prove that Ax = b has a solution
⇔ b ∈ Rn is orthogonal to all solutions y of the system A′y = 0.
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Solution. If x is a solution of Ax = b and y is a solution of A′y = 0, then b′y = x′A′y = 0,
thus b is orthogonal to y.

Conversely, suppose b′y = 0 for all y ∈ Rn which is a solution of A′y = 0. Let
W = A(Rn) = the range space of A, and W⊥ its orthogonal complement. If A′y = 0 then
x′A′y = 0 ⇒ (Ax)′y = 0 for every x ∈ Rn ⇒ y ∈ W⊥. Conversely y ∈ W⊥ ⇒ ∀x ∈
Rn.(Ax)′y = 0⇒ x′A′y = 0⇒ A′y = 0. Thus W⊥ = {y | A′y = 0}. Now b′y = 0 for all
y ∈ W⊥, so b ∈ W ⇒ b = Ax for some x ∈ Rn ⇒ Ax = b is solvable.

Question 1(c) Define a similar matrix and prove that two similar matrices have the same
characteristic equation. Write down a matrix having 1, 2, 3 as eigenvalues. Is such a matrix
unique?

Solution. Two matrices A,B are said to be similar if there exists a matrix P such that
B = P−1AP. If A,B are similar, say B = P−1AP, then characteristic polynomial of B is
|λI−B| = |λI−P−1AP| = |P−1λIP−P−1AP| = |P−1||λI−A||P| = |λI−A|. (Note that
|X||Y| = |XY|.) Thus the characteristic polynomial of B is the same as that of A.

Clearly the matrix A =
( 1 0 0

0 2 0
0 0 3

)
has eigenvalues 1,2,3. Such a matrix is not unique, for

example B =
( 1 1 0

0 2 0
0 0 3

)
has the same eigenvalues, but B 6= A.

Question 2(a) Show that

A =

 5 −6 −6
−1 4 2
3 −6 −4


is diagonalizable and hence determine A5.

Solution.

|A− λI| = 0

⇒

∣∣∣∣∣∣
5− λ −6 −6
−1 4− λ 2
3 −6 −4− λ

∣∣∣∣∣∣ = 0

⇒ (5− λ)[(4− λ)(−4− λ) + 12] + 6[4 + λ− 6]− 6[6− 3(4− λ)] = 0
⇒ (5− λ)[λ2 − 4] + 6[λ− 2− 3λ+ 6] = 0
⇒ −λ3 + 5λ2 + 4λ− 20− 12λ+ 24 = 0
⇒ λ3 − 5λ2 + 8λ− 4 = 0

Thus λ = 1, 2, 2.
If (x1, x2, x3) is an eigenvector for λ = 1, then 4 −6 −6

−1 3 2
3 −6 −5

x1

x2

x3

 = 0

⇒ 4x1 − 6x2 − 6x3 = 0

−x1 + 3x2 + 2x3 = 0

3x1 − 6x2 − 5x3 = 0

2



Thus x1 = x3, x3 = −3x2, so (−3, 1,−3) is an eigenvector for λ = 1.
If (x1, x2, x3) is an eigenvector for λ = 2, then 3 −6 −6

−1 2 2
3 −6 −6

x1

x2

x3

 = 0

⇒ 3x1 − 6x2 − 6x3 = 0

−x1 + 2x2 + 2x3 = 0

3x1 − 6x2 − 6x3 = 0

Thus x1 − 2x2 − 2x3 = 0, so taking x1 = 0, x2 = 1, (0, 1,−1) is an eigenvector for λ = 2.
Taking x1 = 4, x2 = 1, (4, 1, 1) is another eigenvector for λ = 2, and these two are linearly
independent.

Let P =

−3 0 4
1 1 1
−3 −1 1

. A simple calculation shows that P−1 = 1
2

 2 −4 −4
−4 9 7
2 −3 −3

.

Clearly P−1AP =

1 0 0
0 2 0
0 0 2

.

Now P−1A5P = (P−1AP)5 =

1 0 0
0 32 0
0 0 32

.

A5 = P

1 0 0
0 32 0
0 0 32

P−1

=
1

2

−3 0 4
1 1 1
−3 −1 1

1 0 0
0 32 0
0 0 32

 2 −4 −4
−4 9 7
2 −3 −3


=

1

2

−3 0 128
1 32 32
−3 −32 32

 2 −4 −4
−4 9 7
2 −3 −3


=

125 −186 −186
−31 94 62
93 −186 −154


Note: Another way of computing A5 is given below. This uses the characteristic poly-

nomial of A : A3 = 5A2 − 8A + 4I and not the diagonal form, so it will not be permissible
here.
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A5 = A2(5A2 − 8A + 4I)

= 5A(5A2 − 8A + 4I)− 8(5A2 − 8A + 4I) + 4A2

= 25(5A2 − 8A + 4I)− 76A2 + 84A− 32I

= 49A2 − 116A + 68I

Now calculate A2 and substitute.

Question 2(b) Let A and B be matrices of order n. If I−AB is invertible, then I−BA
is also invertible and

(I−BA)−1 = I + B(I−AB)−1A

Show that AB and BA have the same characteristic values.

Solution.

(I + B(I−AB)−1A)(I−BA)
= I−BA + B(I−AB)−1A−B(I−AB)−1ABA
= [I + B(I−AB)−1A]−B[I + (I−AB)−1AB]A (1)

Now (I−AB)−1(I−AB) = (I−AB)−1 − (I−AB)−1AB = I
∴ (I−AB)−1 = I + (I−AB)−1AB

Substituting in (1) (I + B(I−AB)−1A)(I−BA)
= I + B(I−AB)−1A−B(I−AB)−1A = I

Thus I−BA is invertible and (I−BA)−1 = I + B(I−AB)−1A as desired.
We shall show that λI−AB is invertible if and only if λI−BA is invertible. This means

that if λ is an eigenvalue of AB, then |λI−AB| = 0⇒ |λI−BA| = 0 so λ is an eigenvalue
of BA.

If λI−AB is invertible, then

(I + B(λI−AB)−1A)(λI−BA)
= λI−BA + λB(λI−AB)−1A−B(λI−AB)−1ABA
= λ[I + B(λI−AB)−1A]−B[I + (λI−AB)−1AB]A (2)

Now (λI−AB)−1(λI−AB) = λ(λI−AB)−1 − (λI−AB)−1AB = I
∴ λ(λI−AB)−1 = I + (λI−AB)−1AB

Substituting in (2) (I + B(λI−AB)−1A)(λI−BA)
= λI + λB(λI−AB)−1A− λB(λI−AB)−1A = λI

Thus λI−BA is invertible if λI−AB is invertible. The converse is obvious as the situation
is symmetric, thus AB and BA have the same eigenvalues.

We give another simple proof of the fact that AB and BA have the same eigenvalues.

1. Let 0 be an eigenvalue of AB. This means that AB is singular, i.e. 0 = |AB| =
|A||B| = |BA|, so BA is singular, hence 0 is an eigenvalue of BA.
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2. Let λ 6= 0 be an eigenvalue of AB and let x 6= 0 be an eigenvector corresponding to
λ, i.e. ABx = λx. Let y = Bx. Then y 6= 0, because Ay = ABx = λx 6= 0 as λ 6= 0.
Now BAy = BABx = B(ABx) = λBx = λy. Thus λ is an eigenvalue of BA.

Question 2(c) Let a, b ∈ C, |b| = 1 and let H be a Hermitian matrix. Show that the
eigenvalues of aI + bH lie on a straight line in the complex plane.

Solution. Let t be as eigenvalue of H, which has to be real because H is Hermitian. Clearly
a + tb is an eigenvalue of aI + bH. Conversely, if λ is an eigenvalue of aI + bH, then λ−a

b

(note b 6= 0 as |b| = 1) is an eigenvalue of H.
Clearly a+ tb lies on the straight line joining points a and a+ b:

z = (1− x)a+ x(b− a), x ∈ R

For the sake of completeness, we prove that the eigenvalues of a Hermitian matrix H are
real. Let z 6= 0 be an eigenvector corresponding to the eigenvalue t.

Hz = tz

⇒ z′Hz = tz′z

⇒ z′Hz
′

= tz′z

But z′Hz = z′H
′
z = z′Hz = tz′z

⇒ tz′z = tz′z

⇒ t = t ∵ z′z 6= 0

Question 3(a) Let A be a symmetric matrix. Show that A is positive definite if and only
if its eigenvalues are all positive.

Solution. A is real symmetric so all eigenvalues of A are real. Let λ1, λ2, . . . , λn be
eigenvalues of A, not necessarily distinct. Let x1 be an eigenvector corresponding to λ1.
Since λ1 and A are real, x1 is also real. Replacing x1 if necessary by µx1, µ suitable, we can
assume that ||x1|| =

√
x′1x1 = 1.

Let P1 be an orthogonal matrix with x1 as its first column. Such a P1 exists, as will be
shown at the end of this result. Clearly the first column of the matrix P1

−1AP1 is equal

to P1
−1Ax = λ1P1

−1x =
( λ

0
0
0

)
, because P1

−1x is the first column of P1
−1P = I. Thus

P1
−1AP1 =

(
λ1 L
0 B

)
= P′1AP1 where B is (n − 1) × (n − 1) symmetric. Since P′1AP1 is

symmetric, it follows that P1
−1AP1 = P′1AP1 =

(
λ1 0
0 B

)
. Induction now gives that there

exists an (n − 1) × (n − 1) orthogonal matrix Q such that Q′BQ =

λ2 0 . . . 0
. . .
0 0 . . . λn


5



where λ2, λ3, . . . , λn are eigenvalues of B. Let P2 =
(

1 0
0 Q

)
, then P2 is orthogonal and

P′2P
′
1AP1P2 = diagonal[λ1, . . . , λn]. Set P = P1P2 . . .Pn, and (y1, . . . , yn)P′ = x then

x′Ax = y′P′APy =
∑n

i=0 λ
2
i y

2
i .

Since P is non-singular, quadratic forms x′Ax and
∑n

i=0 λ
2
i y

2
i assume the same values.

Hence A is positive definite if and only if
∑n

i=0 λ
2
i y

2
i is positive definite if and only if λi > 0

for all i.
Result used: If x1 is a real vector such that ||x1|| =

√
x′1x1 = 1 then there exists an

orthogonal matrix with x1 as its first column.
Proof: We have to find real column vectors x2, . . . ,xn such that ||xi|| = 1, 2 ≤ i ≤ n

and x2, . . . ,xn is an orthonormal system i.e. x′ixj = 0, i 6= j. Consider the single equation
x′1x = 0, where x is a column vector to be determined. This equation has a non-zero solution,
in fact the space of solutions is of dimension n− 1, the rank of the coefficient matrix being
1. If y2 is a solution, we take x2 = y2

||y2|| so that x′1x2 = 0.

We now consider the two equations x′1x = 0, x′2x = 0. Again the number of unknowns
is more than the number of equations, so there is a solution, say y3, and take x3 = y3

||y3|| to
get x1,x2,x3 mutually orthogonal.

Proceeding in this manner, if we consider n− 1 equations x′1x = 0, . . . ,x′n−1x = 0, these
will have a nonzero solution yn, so we set xn = yn

||yn|| . Clearly x1,x2, . . . ,xn is an orthonormal

system, and therefore P = [x1, . . . ,xn] is an orthogonal matrix having x1 as a first column.

Question 3(b) Let A and B be square matrices of order n, show that AB−BA can never
be equal to the identity matrix.

Solution. Let A = 〈aij〉 and B = 〈bij〉. Then

tr AB = Sum of diagonal elements of AB

=
n∑
i=1

n∑
k=1

aikbki =
n∑
k=1

n∑
i=1

bkiaik = tr BA

Thus tr(AB − BA) = tr AB − tr BA = 0. But the trace of the identity matrix is n, thus
AB−BA can never be equal to the identity matrix.

Question 3(c) Let A = 〈aij〉, 1 ≤ i, j ≤ n. If
n∑
j=1
i 6=j

|aij| < |aii|, then the eigenvalues of A lie

in the disc

|λ− aii| ≤
n∑
j=1
i 6=j

|aij|
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Solution. See the solution to question 2(c), year 1997. We showed that if |λ − aii| >
n∑
j=1
i 6=j

|aij| then |λI−A| 6= 0, so λ is not an eigenvalue of A. Thus if λ is an eigenvalue, then

|λ− aii| ≤
n∑
j=1
i 6=j

|aij|, so λ lies in the disc described in the question.
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