UPSC Civil Services Main 1995 - Mathematics Linear Algebra

Sunder Lal Retired Professor of Mathematics Panjab University Chandigarh

June 14, 2007

1 Linear Algebra

Question 1(a) Let $\mathbf{T}(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$ be a linear transformation on \mathbb{R}^3 . What is the matrix of \mathbf{T} w.r.t. the standard basis? What is a basis of the range space of \mathbf{T} ? What is a basis of the null space of \mathbf{T} ?

Solution.

$$\begin{aligned} \mathbf{T}(\mathbf{e_1}) &= \mathbf{T}(1,0,0) = (3,-2,-1) = 3\mathbf{e_1} - 2\mathbf{e_2} - \mathbf{e_3} \\ \mathbf{T}(\mathbf{e_2}) &= \mathbf{T}(0,1,0) = (0,1,2) = \mathbf{e_2} + 2\mathbf{e_3} \\ \mathbf{T}(\mathbf{e_3}) &= \mathbf{T}(0,0,1) = (1,0,4) = \mathbf{e_1} + 4\mathbf{e_3} \\ \mathbf{T} \iff \mathbf{A} &= \begin{pmatrix} 3 & 0 & 1 \\ -2 & 1 & 0 \\ -1 & 2 & 4 \end{pmatrix} \end{aligned}$$

Clearly $\mathbf{T}(\mathbf{e_2}), \mathbf{T}(\mathbf{e_3})$ are linearly independent. If $(3, -2, -1) = \alpha(0, 1, 2) + \beta(1, 0, 4)$, then $\beta = 3, \alpha = -2$, but $2\alpha + 4\beta \neq -1$, so $\mathbf{T}(\mathbf{e_1}), \mathbf{T}(\mathbf{e_2}), \mathbf{T}(\mathbf{e_3})$ are linearly independent. Thus (3, -2, -1), (0, 1, 2), (1, 0, 4) is a basis of the range space of \mathbf{T} .

Note that $\mathbf{T}(x_1, x_2, x_3) = 0 \Leftrightarrow x_1 = x_2 = x_3 = 0$, so the null space of **T** is $\{\mathbf{0}\}$, and the empty set is a basis. Note that the matrix of **T** is nonsingular, so $\mathbf{T}(\mathbf{e_1}), \mathbf{T}(\mathbf{e_2}), \mathbf{T}(\mathbf{e_3})$ are linearly independent.

Question 1(b) Let A be a square matrix of order n. Prove that Ax = b has a solution $\Leftrightarrow b \in \mathbb{R}^n$ is orthogonal to all solutions y of the system A'y = 0.

Solution. If x is a solution of Ax = b and y is a solution of A'y = 0, then b'y = x'A'y = 0, thus b is orthogonal to y.

Conversely, suppose $\mathbf{b'y} = 0$ for all $\mathbf{y} \in \mathbb{R}^n$ which is a solution of $\mathbf{A'y} = \mathbf{0}$. Let $\mathcal{W} = \mathbf{A}(\mathbb{R}^n) =$ the range space of \mathbf{A} , and \mathcal{W}^{\perp} its orthogonal complement. If $\mathbf{A'y} = \mathbf{0}$ then $\mathbf{x'A'y} = 0 \Rightarrow (\mathbf{Ax})'\mathbf{y} = 0$ for every $\mathbf{x} \in \mathbb{R}^n \Rightarrow \mathbf{y} \in \mathcal{W}^{\perp}$. Conversely $\mathbf{y} \in \mathcal{W}^{\perp} \Rightarrow \forall \mathbf{x} \in \mathbb{R}^n$. (\mathbf{Ax})' $\mathbf{y} = 0 \Rightarrow \mathbf{x'A'y} = 0 \Rightarrow \mathbf{A'y} = \mathbf{0}$. Thus $\mathcal{W}^{\perp} = \{\mathbf{y} \mid \mathbf{A'y} = \mathbf{0}\}$. Now $\mathbf{b'y} = 0$ for all $\mathbf{y} \in \mathcal{W}^{\perp}$, so $\mathbf{b} \in \mathcal{W} \Rightarrow \mathbf{b} = \mathbf{Ax}$ for some $\mathbf{x} \in \mathbb{R}^n \Rightarrow \mathbf{Ax} = \mathbf{b}$ is solvable.

Question 1(c) Define a similar matrix and prove that two similar matrices have the same characteristic equation. Write down a matrix having 1, 2, 3 as eigenvalues. Is such a matrix unique?

Solution. Two matrices \mathbf{A}, \mathbf{B} are said to be similar if there exists a matrix \mathbf{P} such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. If \mathbf{A}, \mathbf{B} are similar, say $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$, then characteristic polynomial of \mathbf{B} is $|\lambda \mathbf{I} - \mathbf{B}| = |\lambda \mathbf{I} - \mathbf{P}^{-1}\mathbf{A}\mathbf{P}| = |\mathbf{P}^{-1}\lambda\mathbf{I}\mathbf{P} - \mathbf{P}^{-1}\mathbf{A}\mathbf{P}| = |\mathbf{P}^{-1}||\lambda \mathbf{I} - \mathbf{A}||\mathbf{P}| = |\lambda \mathbf{I} - \mathbf{A}|$. (Note that $|\mathbf{X}||\mathbf{Y}| = |\mathbf{X}\mathbf{Y}|$.) Thus the characteristic polynomial of \mathbf{B} is the same as that of \mathbf{A} .

Clearly the matrix $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ has eigenvalues 1,2,3. Such a matrix is not unique, for example $\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ has the same eigenvalues, but $\mathbf{B} \neq \mathbf{A}$.

Question 2(a) Show that

$$\mathbf{A} = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

is diagonalizable and hence determine \mathbf{A}^5 .

Solution.

$$\begin{aligned} |\mathbf{A} - \lambda \mathbf{I}| &= 0 \\ \Rightarrow & \begin{vmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & -4 - \lambda \end{vmatrix} &= 0 \\ \Rightarrow & (5 - \lambda)[(4 - \lambda)(-4 - \lambda) + 12] + 6[4 + \lambda - 6] - 6[6 - 3(4 - \lambda)] &= 0 \\ \Rightarrow & (5 - \lambda)[\lambda^2 - 4] + 6[\lambda - 2 - 3\lambda + 6] &= 0 \\ \Rightarrow & -\lambda^3 + 5\lambda^2 + 4\lambda - 20 - 12\lambda + 24 &= 0 \\ \Rightarrow & \lambda^3 - 5\lambda^2 + 8\lambda - 4 &= 0 \end{aligned}$$

Thus $\lambda = 1, 2, 2$.

If (x_1, x_2, x_3) is an eigenvector for $\lambda = 1$, then

$$\begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$
$$\Rightarrow 4x_1 - 6x_2 - 6x_3 = \mathbf{0}$$
$$-x_1 + 3x_2 + 2x_3 = \mathbf{0}$$
$$3x_1 - 6x_2 - 5x_3 = \mathbf{0}$$

Thus $x_1 = x_3, x_3 = -3x_2$, so (-3, 1, -3) is an eigenvector for $\lambda = 1$. If (x_1, x_2, x_3) is an eigenvector for $\lambda = 2$, then

$$\begin{pmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$
$$\Rightarrow \quad 3x_1 - 6x_2 - 6x_3 = 0$$
$$-x_1 + 2x_2 + 2x_3 = 0$$
$$3x_1 - 6x_2 - 6x_3 = 0$$

Thus $x_1 - 2x_2 - 2x_3 = 0$, so taking $x_1 = 0, x_2 = 1$, (0, 1, -1) is an eigenvector for $\lambda = 2$. Taking $x_1 = 4, x_2 = 1$, (4, 1, 1) is another eigenvector for $\lambda = 2$, and these two are linearly independent.

Let
$$\mathbf{P} = \begin{pmatrix} -3 & 0 & 4 \\ 1 & 1 & 1 \\ -3 & -1 & 1 \end{pmatrix}$$
. A simple calculation shows that $\mathbf{P}^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -4 & -4 \\ -4 & 9 & 7 \\ 2 & -3 & -3 \end{pmatrix}$.
Clearly $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
Now $\mathbf{P}^{-1}\mathbf{A}^{5}\mathbf{P} = (\mathbf{P}^{-1}\mathbf{A}\mathbf{P})^{5} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32 \end{pmatrix}$.
 $\mathbf{A}^{5} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32 \end{pmatrix} \mathbf{P}^{-1}$
 $= \frac{1}{2} \begin{pmatrix} -3 & 0 & 4 \\ 1 & 1 & 1 \\ -3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & 32 \end{pmatrix} \begin{pmatrix} 2 & -4 & -4 \\ -4 & 9 & 7 \\ 2 & -3 & -3 \end{pmatrix}$
 $= \frac{1}{2} \begin{pmatrix} -3 & 0 & 128 \\ 1 & 32 & 32 \\ -3 & -32 & 32 \end{pmatrix} \begin{pmatrix} 2 & -4 & -4 \\ -4 & 9 & 7 \\ 2 & -3 & -3 \end{pmatrix}$
 $= \begin{pmatrix} 125 & -186 & -186 \\ -31 & 94 & 62 \\ 93 & -186 & -154 \end{pmatrix}$

Note: Another way of computing \mathbf{A}^5 is given below. This uses the characteristic polynomial of $\mathbf{A} : \mathbf{A}^3 = 5\mathbf{A}^2 - 8\mathbf{A} + 4\mathbf{I}$ and not the diagonal form, so it will *not* be permissible here.

$$\mathbf{A}^{5} = \mathbf{A}^{2}(5\mathbf{A}^{2} - 8\mathbf{A} + 4\mathbf{I})$$

= $5\mathbf{A}(5\mathbf{A}^{2} - 8\mathbf{A} + 4\mathbf{I}) - 8(5\mathbf{A}^{2} - 8\mathbf{A} + 4\mathbf{I}) + 4\mathbf{A}^{2}$
= $25(5\mathbf{A}^{2} - 8\mathbf{A} + 4\mathbf{I}) - 76\mathbf{A}^{2} + 84\mathbf{A} - 32\mathbf{I}$
= $49\mathbf{A}^{2} - 116\mathbf{A} + 68\mathbf{I}$

Now calculate \mathbf{A}^2 and substitute.

Question 2(b) Let A and B be matrices of order n. If I - AB is invertible, then I - BA is also invertible and

$$(\mathbf{I} - \mathbf{B}\mathbf{A})^{-1} = \mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}$$

Show that AB and BA have the same characteristic values.

Solution.

$$\begin{split} (\mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A})(\mathbf{I} - \mathbf{B}\mathbf{A}) \\ &= \mathbf{I} - \mathbf{B}\mathbf{A} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A} - \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B}\mathbf{A} \\ &= [\mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}] - \mathbf{B}[\mathbf{I} + (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B}]\mathbf{A} \qquad (1) \\ \mathrm{Now} \quad (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}(\mathbf{I} - \mathbf{A}\mathbf{B}) = (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1} - (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} = \mathbf{I} \\ &\therefore \quad (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1} = \mathbf{I} + (\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} \\ \mathrm{Substituting in} (1) \quad (\mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A})(\mathbf{I} - \mathbf{B}\mathbf{A}) \\ &= \mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A} - \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A} = \mathbf{I} \end{split}$$

Thus $\mathbf{I} - \mathbf{B}\mathbf{A}$ is invertible and $(\mathbf{I} - \mathbf{B}\mathbf{A})^{-1} = \mathbf{I} + \mathbf{B}(\mathbf{I} - \mathbf{A}\mathbf{B})^{-1}\mathbf{A}$ as desired.

We shall show that $\lambda \mathbf{I} - \mathbf{AB}$ is invertible if and only if $\lambda \mathbf{I} - \mathbf{BA}$ is invertible. This means that if λ is an eigenvalue of \mathbf{AB} , then $|\lambda \mathbf{I} - \mathbf{AB}| = 0 \Rightarrow |\lambda \mathbf{I} - \mathbf{BA}| = 0$ so λ is an eigenvalue of \mathbf{BA} .

If $\lambda \mathbf{I} - \mathbf{AB}$ is invertible, then

$$(\mathbf{I} + \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A})(\lambda \mathbf{I} - \mathbf{BA})$$

$$= \lambda \mathbf{I} - \mathbf{BA} + \lambda \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A} - \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{ABA}$$

$$= \lambda [\mathbf{I} + \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A}] - \mathbf{B}[\mathbf{I} + (\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{AB}]\mathbf{A} \qquad (2)$$
Now $(\lambda \mathbf{I} - \mathbf{AB})^{-1}(\lambda \mathbf{I} - \mathbf{AB}) = \lambda(\lambda \mathbf{I} - \mathbf{AB})^{-1} - (\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{AB} = \mathbf{I}$

$$\therefore \quad \lambda(\lambda \mathbf{I} - \mathbf{AB})^{-1} = \mathbf{I} + (\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{AB}$$
Substituting in (2) $(\mathbf{I} + \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A})(\lambda \mathbf{I} - \mathbf{BA})$

$$= \lambda \mathbf{I} + \lambda \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A} - \lambda \mathbf{B}(\lambda \mathbf{I} - \mathbf{AB})^{-1}\mathbf{A} = \lambda \mathbf{I}$$

Thus $\lambda \mathbf{I} - \mathbf{B}\mathbf{A}$ is invertible if $\lambda \mathbf{I} - \mathbf{A}\mathbf{B}$ is invertible. The converse is obvious as the situation is symmetric, thus $\mathbf{A}\mathbf{B}$ and $\mathbf{B}\mathbf{A}$ have the same eigenvalues.

We give another simple proof of the fact that **AB** and **BA** have the same eigenvalues.

1. Let 0 be an eigenvalue of **AB**. This means that **AB** is singular, i.e. $0 = |\mathbf{AB}| = |\mathbf{A}||\mathbf{B}| = |\mathbf{BA}|$, so **BA** is singular, hence 0 is an eigenvalue of **BA**.

2. Let $\lambda \neq 0$ be an eigenvalue of **AB** and let $\mathbf{x} \neq \mathbf{0}$ be an eigenvector corresponding to λ , i.e. $\mathbf{ABx} = \lambda \mathbf{x}$. Let $\mathbf{y} = \mathbf{Bx}$. Then $\mathbf{y} \neq \mathbf{0}$, because $\mathbf{Ay} = \mathbf{ABx} = \lambda \mathbf{x} \neq \mathbf{0}$ as $\lambda \neq 0$. Now $\mathbf{BAy} = \mathbf{BABx} = \mathbf{B}(\mathbf{ABx}) = \lambda \mathbf{Bx} = \lambda \mathbf{y}$. Thus λ is an eigenvalue of \mathbf{BA} .

Question 2(c) Let $a, b \in \mathbb{C}$, |b| = 1 and let **H** be a Hermitian matrix. Show that the eigenvalues of $a\mathbf{I} + b\mathbf{H}$ lie on a straight line in the complex plane.

Solution. Let t be as eigenvalue of **H**, which has to be real because **H** is Hermitian. Clearly a + tb is an eigenvalue of $a\mathbf{I} + b\mathbf{H}$. Conversely, if λ is an eigenvalue of $a\mathbf{I} + b\mathbf{H}$, then $\frac{\lambda-a}{b}$ (note $b \neq 0$ as |b| = 1) is an eigenvalue of **H**.

Clearly a + tb lies on the straight line joining points a and a + b:

$$z = (1-x)a + x(b-a), \ x \in \mathbb{R}$$

For the sake of completeness, we prove that the eigenvalues of a Hermitian matrix **H** are real. Let $\mathbf{z} \neq \mathbf{0}$ be an eigenvector corresponding to the eigenvalue t.

$$\begin{aligned} \mathbf{Hz} &= t\mathbf{z} \\ \Rightarrow \overline{\mathbf{z}}'\mathbf{Hz} &= t\overline{\mathbf{z}}'\mathbf{z} \\ \Rightarrow \overline{\mathbf{z}}'\mathbf{Hz}' &= \overline{t}\overline{\mathbf{z}}'\mathbf{z} \\ \text{But } \overline{\overline{\mathbf{z}}'\mathbf{Hz}} &= \overline{\mathbf{z}}'\overline{\mathbf{H}}'\mathbf{z} = \overline{\mathbf{z}}'\mathbf{Hz} = t\overline{\mathbf{z}}'\mathbf{z} \\ \Rightarrow t\overline{\mathbf{z}}'\mathbf{z} &= \overline{t}\overline{\mathbf{z}}'\mathbf{z} \\ \Rightarrow t = \overline{t} \quad \because \overline{\mathbf{z}}'\mathbf{z} \neq 0 \end{aligned}$$

Question 3(a) Let \mathbf{A} be a symmetric matrix. Show that \mathbf{A} is positive definite if and only if its eigenvalues are all positive.

Solution. A is real symmetric so all eigenvalues of A are real. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be eigenvalues of A, not necessarily distinct. Let $\mathbf{x_1}$ be an eigenvector corresponding to λ_1 . Since λ_1 and A are real, $\mathbf{x_1}$ is also real. Replacing $\mathbf{x_1}$ if necessary by $\mu \mathbf{x_1}, \mu$ suitable, we can assume that $||\mathbf{x_1}|| = \sqrt{\mathbf{x'_1 x_1}} = 1$.

Let $\mathbf{P_1}$ be an orthogonal matrix with $\mathbf{x_1}$ as its first column. Such a $\mathbf{P_1}$ exists, as will be shown at the end of this result. Clearly the first column of the matrix $\mathbf{P_1}^{-1}\mathbf{AP_1}$ is equal to $\mathbf{P_1}^{-1}\mathbf{Ax} = \lambda_1\mathbf{P_1}^{-1}\mathbf{x} = \begin{pmatrix} \lambda \\ 0 \\ 0 \end{pmatrix}$, because $\mathbf{P_1}^{-1}\mathbf{x}$ is the first column of $\mathbf{P_1}^{-1}\mathbf{P} = \mathbf{I}$. Thus $\mathbf{P_1}^{-1}\mathbf{AP_1} = \begin{pmatrix} \lambda_1 & \mathbf{L} \\ 0 & \mathbf{B} \end{pmatrix} = \mathbf{P'_1}\mathbf{AP_1}$ where \mathbf{B} is $(n-1) \times (n-1)$ symmetric. Since $\mathbf{P'_1}\mathbf{AP_1}$ is symmetric, it follows that $\mathbf{P_1}^{-1}\mathbf{AP_1} = \mathbf{P'_1}\mathbf{AP_1} = \begin{pmatrix} \lambda_1 & \mathbf{0} \\ 0 & \mathbf{B} \end{pmatrix}$. Induction now gives that there exists an $(n-1) \times (n-1)$ orthogonal matrix \mathbf{Q} such that $\mathbf{Q'BQ} = \begin{pmatrix} \lambda_2 & 0 & \dots & 0 \\ \dots & 0 & 0 & \dots & \lambda_n \end{pmatrix}$ where $\lambda_2, \lambda_3, \ldots, \lambda_n$ are eigenvalues of **B**. Let $\mathbf{P_2} = \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{Q} \end{pmatrix}$, then $\mathbf{P_2}$ is orthogonal and $\mathbf{P'_2P'_1AP_1P_2} = \text{diagonal}[\lambda_1, \ldots, \lambda_n]$. Set $\mathbf{P} = \mathbf{P_1P_2} \ldots \mathbf{P_n}$, and $(y_1, \ldots, y_n)\mathbf{P'} = \mathbf{x}$ then $\mathbf{x'Ax} = \mathbf{y'P'APy} = \sum_{i=0}^n \lambda_i^2 y_i^2$.

Since **P** is non-singular, quadratic forms $\mathbf{x}'\mathbf{A}\mathbf{x}$ and $\sum_{i=0}^{n} \lambda_i^2 y_i^2$ assume the same values. Hence **A** is positive definite if and only if $\sum_{i=0}^{n} \lambda_i^2 y_i^2$ is positive definite if and only if $\lambda_i > 0$ for all i.

Result used: If \mathbf{x}_1 is a real vector such that $||\mathbf{x}_1|| = \sqrt{\mathbf{x}'_1 \mathbf{x}_1} = 1$ then there exists an orthogonal matrix with \mathbf{x}_1 as its first column.

Proof: We have to find real column vectors $\mathbf{x}_2, \ldots, \mathbf{x}_n$ such that $||\mathbf{x}_i|| = 1, 2 \le i \le n$ and $\mathbf{x}_2, \ldots, \mathbf{x}_n$ is an orthonormal system i.e. $\mathbf{x}'_i \mathbf{x}_j = 0, i \ne j$. Consider the single equation $\mathbf{x}'_1 \mathbf{x} = 0$, where \mathbf{x} is a column vector to be determined. This equation has a non-zero solution, in fact the space of solutions is of dimension n - 1, the rank of the coefficient matrix being 1. If \mathbf{y}_2 is a solution, we take $\mathbf{x}_2 = \frac{\mathbf{y}_2}{||\mathbf{y}_2||}$ so that $\mathbf{x}'_1 \mathbf{x}_2 = 0$.

We now consider the two equations $\mathbf{x}'_1 \mathbf{x} = 0$, $\mathbf{x}'_2 \mathbf{x} = 0$. Again the number of unknowns is more than the number of equations, so there is a solution, say \mathbf{y}_3 , and take $\mathbf{x}_3 = \frac{\mathbf{y}_3}{||\mathbf{y}_3||}$ to get $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ mutually orthogonal.

Proceeding in this manner, if we consider n-1 equations $\mathbf{x}'_1 \mathbf{x} = 0, \dots, \mathbf{x}'_{n-1} \mathbf{x} = 0$, these will have a nonzero solution \mathbf{y}_n , so we set $\mathbf{x}_n = \frac{\mathbf{y}_n}{\|\mathbf{y}_n\|}$. Clearly $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is an orthonormal system, and therefore $\mathbf{P} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ is an orthogonal matrix having \mathbf{x}_1 as a first column.

Question 3(b) Let \mathbf{A} and \mathbf{B} be square matrices of order n, show that $\mathbf{AB} - \mathbf{BA}$ can never be equal to the identity matrix.

Solution. Let $\mathbf{A} = \langle a_{ij} \rangle$ and $\mathbf{B} = \langle b_{ij} \rangle$. Then

tr AB = Sum of diagonal elements of AB
=
$$\sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \text{tr BA}$$

Thus tr(AB - BA) = tr AB - tr BA = 0. But the trace of the identity matrix is n, thus AB - BA can never be equal to the identity matrix.

Question 3(c) Let $\mathbf{A} = \langle a_{ij} \rangle, 1 \leq i, j \leq n$. If $\sum_{\substack{j=1\\i \neq j}}^{n} |a_{ij}| < |a_{ii}|$, then the eigenvalues of \mathbf{A} lie

in the disc

$$|\lambda - a_{ii}| \le \sum_{\substack{j=1\\i \ne j}}^n |a_{ij}|$$

Solution. See the solution to question 2(c), year 1997. We showed that if $|\lambda - a_{ii}| > \sum_{\substack{j=1 \ i\neq j}}^{n} |a_{ij}|$ then $|\lambda \mathbf{I} - \mathbf{A}| \neq 0$, so λ is not an eigenvalue of \mathbf{A} . Thus if λ is an eigenvalue, then $|\lambda - a_{ii}| \leq \sum_{\substack{j=1 \ i\neq j}}^{n} |a_{ij}|$, so λ lies in the disc described in the question.