UPSC Civil Services Main 1996 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question $\mathbf{1 (a)}$ In \mathbb{R}^{4} let \mathcal{W}_{1} be the space generated by $\{(1,1,0,-1),(2,4,6,0)\}$ and let \mathcal{W}_{2} be space generated by $\{(-1,-2,-2,2),(4,6,4,-6),(1,3,4,-3)\}$. Find a basis for the space $\mathcal{W}_{1}+\mathcal{W}_{2}$.

Solution. Let $\mathbf{v}_{\mathbf{1}}=(1,1,0,-1), \mathbf{v}_{\mathbf{2}}=(2,4,6,0), \mathbf{v}_{\mathbf{3}}=(-1,-2,-2,2), \mathbf{v}_{\mathbf{4}}=(4,6,4,-6), \mathbf{v}_{\mathbf{5}}=$ $(1,3,4,-3)$. Since $\mathbf{w} \in \mathcal{W}_{1}+\mathcal{W}_{2}$ can be written as $\mathbf{w}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$, and $\mathbf{w}_{\mathbf{1}}=\alpha_{1} \mathbf{v}_{\mathbf{1}}+\alpha_{2} \mathbf{v}_{\mathbf{2}}$ and $\mathbf{w}_{\mathbf{2}}=\alpha_{3} \mathbf{v}_{\mathbf{3}}+\alpha_{4} \mathbf{v}_{\mathbf{4}}+\alpha_{5} \mathbf{v}_{\mathbf{5}}$, it follows that \mathbf{w} is a linear combination of $\mathbf{v}_{\mathbf{i}} \Rightarrow \mathcal{W}_{1}+\mathcal{W}_{2}$ is generated by $\left\{\mathbf{v}_{\mathbf{i}}, 1 \leq i \leq 5\right\}$. Thus a maximal independent subset of $\left\{\mathbf{v}_{\mathbf{i}}, 1 \leq i \leq 5\right\}$ will be a basis of $\mathcal{W}_{1}+\mathcal{W}_{2}$.

Clearly $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent. If possible, let $\mathbf{v}_{\mathbf{3}}=\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}$, then the four equations

$$
\begin{aligned}
\lambda_{1}+2 \lambda_{2} & =-1 \\
\lambda_{1}+4 \lambda_{2} & =-2 \\
0 \lambda_{1}+6 \lambda_{2} & =-2 \\
-\lambda_{1}+0 \lambda_{2} & =2
\end{aligned}
$$

should be consistent and provide us λ_{1}, λ_{2}. Clearly the third and fourth equations give us $\lambda_{1}=-2, \lambda_{2}=-\frac{1}{3}$ which do not satisfy the first two equations. Thus $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent.

If possible let $\mathbf{v}_{\mathbf{4}}=\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}+\lambda_{3} \mathbf{v}_{\mathbf{3}}$. Then

$$
\begin{align*}
\lambda_{1}+2 \lambda_{2}-\lambda_{3} & =4 \tag{1a}\\
\lambda_{1}+4 \lambda_{2}-2 \lambda_{3} & =6 \tag{1b}\\
0 \lambda_{1}+6 \lambda_{2}-2 \lambda_{3} & =4 \tag{1c}\\
-\lambda_{1}+0 \lambda_{2}+2 \lambda_{3} & =-6 \tag{1d}
\end{align*}
$$

Adding (1b) and (1d) we get $4 \lambda_{2}=0$, so $\lambda_{2}=0$. Solving (1a) and (1b) we get $\lambda_{3}=-2, \lambda_{1}=$ 2 . These values satisfy all the four equations, so $\mathbf{v}_{\mathbf{4}}=2 \mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{3}}$.

If possible let $\mathbf{v}_{\mathbf{5}}=\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}+\lambda_{3} \mathbf{v}_{\mathbf{3}}$. Then

$$
\begin{align*}
\lambda_{1}+2 \lambda_{2}-\lambda_{3} & =1 \tag{2a}\\
\lambda_{1}+4 \lambda_{2}-2 \lambda_{3} & =3 \tag{2b}\\
0 \lambda_{1}+6 \lambda_{2}-2 \lambda_{3} & =4 \tag{2c}\\
-\lambda_{1}+0 \lambda_{2}+2 \lambda_{3} & =-3 \tag{2d}
\end{align*}
$$

Adding (2b) and (2d) we get $4 \lambda_{2}=0$, so $\lambda_{2}=0$. (2c) then gives us $\lambda_{3}=-2$, and (2a) now gives $\lambda_{1}=-1$, which satisfies all equations. Thus $\mathbf{v}_{\mathbf{5}}=-\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{3}}$. Hence $\{(1,1,0,-1),(2,4,6,0),(-1,-2,-2,2)\}$ is a basis of $\mathcal{W}_{1}+\mathcal{W}_{2}$.

Question $\mathbf{1 (b)}$ Let \mathcal{V} be a finite dimensional vector space and $\mathbf{v} \in \mathcal{V}, \mathbf{v} \neq \mathbf{0}$. Show that there exists a linear functional f on \mathcal{V} such that $f(\mathbf{v}) \neq 0$.

Solution. Complete \mathbf{v} to a basis of \mathcal{V}, say $\left\{\mathbf{v}_{\mathbf{1}}=\mathbf{v}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$, where $\operatorname{dim} \mathcal{V}=n$. Define $f\left(\mathbf{v}_{\mathbf{j}}\right)=\delta_{1 j}$ and $f\left(\sum_{j=1}^{n} a_{j} \mathbf{v}_{\mathbf{j}}\right)=\sum_{j=1}^{n} a_{j} f\left(\mathbf{v}_{\mathbf{j}}\right)$.

Clearly f is a linear functional over \mathcal{V}, and $f(\mathbf{v})=f\left(\mathbf{v}_{\mathbf{1}}\right)=1$. Note that $f\left(\mathbf{v}_{\mathbf{j}}\right)=0, j>1$ and if any $\mathbf{w} \in \mathcal{V}, \mathbf{w}=\sum_{i} a_{i} \mathbf{v}_{\mathbf{i}}, f(\mathbf{w})=a_{1}$.

Question $\mathbf{1}(\mathbf{c})$ Let $\mathcal{V}=\mathbb{R}^{3}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ be a basis of \mathcal{V}. Let $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{V}$ be such that $\mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}, 1 \leq i \leq 3$. By writing the matrix of \mathbf{T} w.r.t. another basis show that the matrices

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \mathbf{B}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are similar.
Solution. Clearly \mathbf{A} is the matrix of \mathbf{T} w.r.t. the basis $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$. Note that

$$
\left[\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right), \mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right), \mathbf{T}\left(\mathbf{v}_{\mathbf{3}}\right)\right]=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right) \mathbf{A}
$$

Let

$$
\begin{aligned}
\mathbf{w}_{\mathbf{1}} & =\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}} \\
\mathbf{w}_{\mathbf{2}} & =\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}} \\
\mathbf{w}_{\mathbf{3}} & =\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}} \\
\Rightarrow \mathbf{T}\left(\mathbf{w}_{\mathbf{1}}\right) & =3 \mathbf{w}_{\mathbf{1}}, \mathbf{T}\left(\mathbf{w}_{\mathbf{2}}\right)=\mathbf{T}\left(\mathbf{w}_{\mathbf{3}}\right)=0
\end{aligned}
$$

We now show that $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ is a basis for \mathcal{V}, i.e. these are linearly independent.

Let $\alpha \mathbf{w}_{\mathbf{1}}+\beta \mathbf{w}_{\mathbf{2}}+\gamma \mathbf{w}_{\mathbf{3}}=\mathbf{0}$, then $(\alpha+\beta) \mathbf{v}_{\mathbf{1}}+(\alpha-\beta+\gamma) \mathbf{v}_{\mathbf{2}}+(\alpha-\gamma) \mathbf{v}_{\mathbf{3}}=\mathbf{0}$. But $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent, therefore $\alpha+\beta=0, \alpha-\beta+\gamma=0, \alpha-\gamma=0 \Rightarrow \alpha=$ $\beta=\gamma=0 \Rightarrow \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ are linearly independent.

The matrix of \mathbf{T} w.r.t. the basis $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ is clearly \mathbf{B}. Note that the choice of $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ is suggested by the shape of \mathbf{B}.

If $\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right)=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right) \mathbf{P},|\mathbf{P}| \neq 0$ then $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$, so \mathbf{A} and \mathbf{B} are similar.
Question 2(a) Let $\mathcal{V}=\mathbb{R}^{3}$ and $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{V}$ be a linear map defined by

$$
\mathbf{T}(x, y, z)=(x+z,-2 x+y,-x+2 y+z)
$$

What is the matrix of \mathbf{T} w.r.t. the basis $(1,0,1),(-1,1,1),(0,1,1)$? Using this matrix write down the matrix of \mathbf{T} with respect to the basis $(0,1,2),(-1,1,1),(0,1,1)$.

Solution. Let $\mathbf{v}_{\mathbf{1}}=(1,0,1), \mathbf{v}_{\mathbf{2}}=(-1,1,1), \mathbf{v}_{\mathbf{3}}=(0,1,1) . \mathbf{T}(x, y, z)=(x+z,-2 x+y,-x+$ $2 y+z)=\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}+\gamma \mathbf{v}_{\mathbf{3}}$, say. This means $\alpha-\beta=x+z, \beta+\gamma=-2 x+y, \alpha+\beta+\gamma=-x+2 y+$ z. This implies $\alpha=x+y+z, \beta=y, \gamma=-2 x$. Thus $\mathbf{T}(x, y, z)=(x+y+z) \mathbf{v}_{\mathbf{1}}+y \mathbf{v}_{\mathbf{2}}-2 x \mathbf{v}_{\mathbf{3}}$. Hence

$$
\left[\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right) \mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right) \mathbf{T}\left(\mathbf{v}_{\mathbf{3}}\right)\right]=\left[\begin{array}{lll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}
\end{array}\right]\left(\begin{array}{ccc}
2 & 1 & 2 \\
0 & 1 & 1 \\
-2 & 2 & 0
\end{array}\right)
$$

Let $\mathbf{w}_{\mathbf{1}}=(0,1,2), \mathbf{w}_{\mathbf{2}}=(-1,1,1), \mathbf{w}_{\mathbf{3}}=(0,1,1)$. Then

$$
\left[\begin{array}{lll}
\mathbf{w}_{\mathbf{1}} & \mathbf{w}_{\mathbf{2}} & \mathbf{w}_{\mathbf{3}}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}
\end{array}\right]\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Hence

$$
\begin{aligned}
{\left[\mathbf{T}\left(\mathbf{w}_{\mathbf{1}}\right) \mathbf{T}\left(\mathbf{w}_{\mathbf{2}}\right) \mathbf{T}\left(\mathbf{w}_{\mathbf{3}}\right)\right] } & =\left[\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right) \mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right) \mathbf{T}\left(\mathbf{v}_{\mathbf{3}}\right)\right] \mathbf{P} \\
& =\left[\mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}\right] \mathbf{A P} \\
& =\left[\begin{array}{lll}
\mathbf{w}_{\mathbf{1}} & \mathbf{w}_{\mathbf{2}} & \mathbf{w}_{\mathbf{3}}
\end{array}\right] \mathbf{P}^{-1} \mathbf{A P}
\end{aligned}
$$

where

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 1 & 2 \\
0 & 1 & 1 \\
-2 & 2 & 0
\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus the matrix of \mathbf{T} w.r.t. basis $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}$ is

$$
\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 2 \\
0 & 1 & 1 \\
-2 & 2 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
3 & 1 & 2 \\
-2 & 0 & -1 \\
0 & 2 & 0
\end{array}\right)
$$

Question 2(b) Let \mathcal{V} and \mathcal{W} be finite dimensional vector spaces such that $\operatorname{dim} \mathcal{V} \geq \operatorname{dim} \mathcal{W}$. Show that there is always a linear map of \mathcal{V} onto \mathcal{W}.

Solution. Let $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{m}}$ be a basis of \mathcal{W}, and $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ be a basis of $\mathcal{V}, n \geq m$. Define

$$
\begin{aligned}
& \mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{w}_{\mathbf{i}}, \quad i=1,2, \ldots, m \\
& \mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{0}, \quad i=m+1, \ldots, n
\end{aligned}
$$

and for any $\mathbf{v} \in \mathcal{V}, \mathbf{v}=\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{\mathbf{i}}, \mathbf{T}(\mathbf{v})=\sum_{i=1}^{m} \alpha_{i} \mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)$.
Clearly $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{W}$ is linear. \mathbf{T} is onto, since if $\mathbf{w} \in \mathcal{W}, \mathbf{w}=\sum_{i=1}^{m} a_{i} \mathbf{w}_{\mathbf{i}}$, then $\mathbf{T}\left(\sum_{i=1}^{m} a_{i} \mathbf{v}_{\mathbf{i}}\right)=\sum_{i=1}^{m} a_{i} \mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{w}$, proving the result.
Question 2(c) Solve by Cramer's rule

$$
\begin{array}{r}
x+y-2 z=1 \\
2 x-7 z=3 \\
x+y-z=5
\end{array}
$$

Solution.

$$
\begin{aligned}
& D=\left|\begin{array}{lll}
1 & 1 & -2 \\
2 & 0 & -7 \\
1 & 1 & -1
\end{array}\right|=\left|\begin{array}{ccc}
-1 & -1 & -2 \\
-5 & -7 & -7 \\
0 & 0 & -1
\end{array}\right|=-2 \\
& x=\frac{\left|\begin{array}{lll}
1 & 1 & -2 \\
3 & 0 & -7 \\
5 & 1 & -1
\end{array}\right|}{D}=\frac{\left|\begin{array}{ccc}
1 & 1 & -2 \\
3 & 0 & -7 \\
4 & 0 & 1
\end{array}\right|}{D}=\frac{-31}{-2}=\frac{31}{2} \\
& y=\frac{\left|\begin{array}{lll}
1 & 1 & -2 \\
2 & 3 & -7 \\
1 & 5 & -1
\end{array}\right|}{D}=\frac{\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -3 \\
1 & 4 & 1
\end{array}\right|}{D}=\frac{13}{-2}=-\frac{13}{2} \\
& z=\frac{\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 3 \\
1 & 1 & 5
\end{array}\right|}{D}=\frac{\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 3 \\
0 & 0 & 4
\end{array}\right|}{D}=\frac{-8}{-2}=4
\end{aligned}
$$

Question 3(a) Find the inverse of the matrix

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

by computing its characteristic polynomial.

Solution. The characteristic polynomial of \mathbf{A} is

$$
\begin{aligned}
|\mathbf{A}-\lambda \mathbf{I}| & =\left|\begin{array}{cccc}
-\lambda & 1 & 0 & 0 \\
0 & -\lambda & 1 & 0 \\
0 & 0 & -\lambda & 1 \\
1 & 0 & 0 & -\lambda
\end{array}\right| \\
& =-\lambda\left[-\lambda^{3}\right]-1[1]=\lambda^{4}-1=0
\end{aligned}
$$

Thus by the Cayley-Hamilton theorem, $\mathbf{A}^{4}=\mathbf{I}$, so $\mathbf{A}^{-1}=\mathbf{A}^{3}$.

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& \mathbf{A}^{3}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)=\mathbf{A}^{-1}
\end{aligned}
$$

Question 3(b) If \mathbf{A} and \mathbf{B} are $n \times n$ matrices such that $\mathbf{A B}=\mathbf{B A}$, show that $\mathbf{A B}$ and BA have a common characteristic vector.

Solution. Let λ be any eigenvalue of \mathbf{A} and let \mathcal{V}_{λ} be the eigenspace of \mathbf{A} corresponding to λ. We show that $\mathbf{B}\left(\mathcal{V}_{\lambda}\right) \subseteq \mathcal{V}_{\lambda}$. Let $\mathbf{v} \in \mathcal{V}_{\lambda}$, then $\mathbf{A}(\mathbf{B v})=\mathbf{B}(\mathbf{A v})=\mathbf{B}(\lambda \mathbf{v})=\lambda \mathbf{B} \mathbf{v} \Rightarrow \mathbf{B} \mathbf{v} \in \mathcal{V}_{\lambda}$.

Consider $\mathbf{B}^{*}: \mathcal{V}_{\lambda} \longrightarrow \mathcal{V}_{\lambda}$ such that $\mathbf{B}^{*}(\mathbf{v})=\mathbf{B}(\mathbf{v})$ - note that \mathbf{B}^{*} is a restriction of \mathbf{B} to \mathcal{V}_{λ} and we have already shown that $\mathbf{B}\left(\mathcal{V}_{\lambda}\right) \subseteq \mathcal{V}_{\lambda}$.

Let μ be an eigenvalue of \mathbf{B}^{*}, then μ is also an eigenvalue of \mathbf{B} (because a basis of \mathcal{V}_{λ} can be extended to a basis of \mathcal{V}, and in this basis $\mathbf{B}=\left(\begin{array}{cc}\mathbf{B}^{*} & \mathbf{C} \\ \mathbf{0} & \mathbf{D}\end{array}\right)$ for some matrices $\left.\mathbf{C}, \mathbf{D}\right)$. Let $\mathbf{v} \in \mathcal{V}_{\lambda}$ be an eigenvector of \mathbf{B}^{*} corresponding to μ, by definition $\mathbf{v} \neq \mathbf{0}$. Then $\mathbf{B} \mathbf{v}=\mathbf{B}^{*} \mathbf{v}=\mu \mathbf{v}$. Thus \mathbf{A} and \mathbf{B} have a common eigenvector \mathbf{v}, note that $\mathbf{A v}=\lambda \mathbf{v}$ as $\mathbf{v} \in \mathcal{V}_{\lambda}$.

Question 3(c) Reduce to canonical form the orthogonal matrix

$$
\mathbf{O}=\left(\begin{array}{ccc}
\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right)
$$

Solution. Before solving this particular problem, we present a general discussion about orthogonal matrices. An orthogonal matrix satisfies $\mathbf{O}^{\prime} \mathbf{O}=\mathbf{I}$, so its determinant is 1 or -1 , here we focus on the case where $|\mathbf{O}|=1$. If λ is an eigenvalue of \mathbf{O} and \mathbf{x} a corresponding eigenvector, then $|\lambda|^{2} \mathbf{x}^{\prime} \mathbf{x}=(\mathbf{O x})^{\prime} \mathbf{O} \mathbf{x}=\mathbf{x}^{\prime} \mathbf{O}^{\prime} \mathbf{O} \mathbf{x}=\mathbf{x}^{\prime} \mathbf{x}$, so $|\lambda|=1$. Since the characteristic
polynomial has real coefficients, the eigenvalues must be real or in complex conjugate pairs. Thus for a matrix of order 3 , at least one eigenvalue is real, and must be 1 or -1 . Since $|\mathbf{O}|=1$, one real value must be 1 , and the three possibilities are $\{1,1,1\},\{1,-1,-1\}$ and $\left\{1, e^{i \theta}, e^{-i \theta}\right\}$.

Here we consider the third case, as the given matrix has 1 and $\frac{1}{3} \pm i \frac{2 \sqrt{2}}{3}$ as eigenvalues, proved later.

Let $\mathbf{Z}=\mathbf{X}_{\mathbf{1}}+i \mathbf{X}_{\mathbf{2}}$ be an eigenvector corresponding to the eigenvalue $e^{i \theta}$. Let $\mathbf{X}_{\mathbf{3}}$ be the eigenvector corresponding to the eigenvalue 1. Since \mathbf{Z} and $\mathbf{X}_{\mathbf{3}}$ correspond to different eigenvalues, these are orthogonal, i.e. $\mathbf{Z}^{\prime} \mathbf{X}_{\mathbf{3}}=\left(\mathbf{X}_{\mathbf{1}}^{\prime}+i \mathbf{X}_{\mathbf{2}}^{\prime}\right) \mathbf{X}_{\mathbf{3}}=0 \Rightarrow \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{3}}=0, \mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{3}}=0$. Note that $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}$ are real vectors. Since $\mathbf{O Z}=e^{i \theta} \mathbf{Z}=(\cos \theta+i \sin \theta)\left(\mathbf{X}_{\mathbf{1}}+i \mathbf{X}_{\mathbf{2}}\right)$. Equating real and imaginary parts we get

$$
\left.\begin{array}{rl}
\mathbf{O X}_{\mathbf{1}} & =\mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{2}} \sin \theta \\
\mathbf{O X}_{\mathbf{2}} & =\mathbf{X}_{\mathbf{1}} \sin \theta+\mathbf{X}_{\mathbf{2}} \cos \theta \\
\therefore \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{O}^{\prime} \mathbf{O} \mathbf{X}_{\mathbf{1}} & =\left(\mathbf{X}_{\mathbf{1}}^{\prime} \cos \theta-\mathbf{X}_{\mathbf{2}}^{\prime} \sin \theta\right)\left(\mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{2}} \sin \theta\right) \\
\Rightarrow \quad \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}} & =\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}} \cos ^{2} \theta-\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{1}} \cos \theta \sin \theta-\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin \theta \cos \theta+\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin ^{2} \theta \\
\Rightarrow \quad & 0
\end{array}=\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}} \sin ^{2} \theta-\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin ^{2} \theta+2 \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{2}} \cos \theta \sin \theta\right)
$$

(Note that $\sin \theta \neq 0$ since we are considering the case where $e^{i \theta}$ is complex.) Similarly

$$
\begin{align*}
\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{O}^{\prime} \mathbf{O} \mathbf{X}_{\mathbf{1}} & =\left(\mathbf{X}_{\mathbf{1}}^{\prime} \sin \theta+\mathbf{X}_{\mathbf{2}}^{\prime} \cos \theta\right)\left(\mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{2}} \sin \theta\right) \\
\Rightarrow & \mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{1}} \\
\Rightarrow & =\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}} \sin \theta \cos \theta-\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin ^{2} \theta-\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin \theta \cos \theta+\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{1}} \cos ^{2} \theta \tag{2}\\
\Rightarrow & 0
\end{align*} \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{2}} \cos \theta-2 \mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{2}} \sin \theta \quad \text { (2) }
$$

Multiplying (1) by $\sin \theta$ and (2) by $\cos \theta$ and adding, we get $\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}}=0$ or $\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}}=$ $\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}}$, so from (2), $\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}}=0$, i.e. $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}$ are orthogonal.

Thus $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \mathbf{X}_{\mathbf{3}}$ are mutually orthogonal. We can assume that $\mathbf{X}_{\mathbf{1}}^{\prime} \mathbf{X}_{\mathbf{1}}=\mathbf{X}_{\mathbf{2}}^{\prime} \mathbf{X}_{\mathbf{2}}=1$, replacing \mathbf{Z} by $\lambda \mathbf{Z}, \lambda \in \mathbb{R}$ if necessary. Similarly we can take $\mathbf{X}_{\mathbf{3}}^{\prime} \mathbf{X}_{\mathbf{3}}=1$. Let $\mathbf{P}=\left[\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}} \mathbf{X}_{\mathbf{3}}\right]$ so that $\mathbf{P}^{\prime} \mathbf{P}=\mathbf{I}$. Now

$$
\begin{aligned}
\mathbf{O}\left[\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}} \mathbf{X}_{\mathbf{3}}\right] & =\left[\mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{2}} \sin \theta, \mathbf{X}_{\mathbf{1}} \sin \theta+\mathbf{X}_{\mathbf{2}} \cos \theta, \mathbf{X}_{\mathbf{3}}\right] \\
& =\left[\mathbf{X}_{\mathbf{1}} \mathbf{X}_{\mathbf{2}} \mathbf{X}_{\mathbf{3}}\right]\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Rightarrow \mathbf{P}^{-1} \mathbf{O P}=\mathbf{P}^{\prime} \mathbf{O P} & =\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

which is the canonical form of \mathbf{O} when the eigenvalues are $1, e^{i \theta}, e^{-i \theta}$.

Solution of given problem.

$$
\begin{aligned}
\mathbf{O} & =\left(\begin{array}{ccc}
\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right) \\
|\mathbf{O}-\lambda \mathbf{I}| & =\left|\begin{array}{ccc}
\frac{2}{3}-\lambda & -\frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}-\lambda & -\frac{2}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3}-\lambda
\end{array}\right|=\frac{1}{27}\left|\begin{array}{ccc}
2-3 \lambda & -2 & 1 \\
2 & 1-3 \lambda & -2 \\
1 & 2 & 2-3 \lambda
\end{array}\right| \\
& =\frac{1}{27}\left[(2-3 \lambda)^{2}(1-3 \lambda)+4(2-3 \lambda)+1(3+3 \lambda)+2(6-6 \lambda)\right] \\
& =-\frac{1}{27}\left[27 \lambda^{3}-45 \lambda^{2}+45 \lambda-27\right] \\
& =-\frac{1}{3}\left[(\lambda-1)\left(3 \lambda^{2}-2 \lambda-3\right)\right]
\end{aligned}
$$

Thus $\lambda=1, \frac{1}{3} \pm i \frac{2 \sqrt{2}}{3}$ are eigenvalues of \mathbf{O}.
Thus the canonical form of \mathbf{O} is derived from above, where $\cos \theta=\frac{1}{3}, \sin \theta=\frac{2 \sqrt{2}}{3}$:

$$
\left(\begin{array}{ccc}
\frac{1}{3} & \frac{2 \sqrt{2}}{3} & 0 \\
-\frac{2 \sqrt{2}}{3} & \frac{1}{3} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The matrix \mathbf{P} can be determined as follows (this is not needed for this problem, but is given for completeness):

1. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an eigenvector for $\lambda=1$, then

$$
\begin{aligned}
-\frac{1}{3} x_{1}-\frac{2}{3} x_{2}+\frac{1}{3} x_{3} & =0 \\
\frac{2}{3} x_{1}-\frac{2}{3} x_{2}-\frac{2}{3} x_{3} & =0 \\
\frac{1}{3} x_{1}+\frac{2}{3} x_{2}-\frac{1}{3} x_{3} & =0
\end{aligned}
$$

Thus $x_{2}=0, x_{1}-x_{3}=0$, so we can take $(1,0,1)$ as an eigenvector.
2. The vectors $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}$ in the above discussion are determined by the requirements

$$
\begin{aligned}
& \mathbf{O X}_{\mathbf{1}}=\mathbf{X}_{\mathbf{1}} \cos \theta-\mathbf{X}_{\mathbf{2}} \sin \theta \\
& \mathbf{O X}_{\mathbf{2}}=\mathbf{X}_{\mathbf{1}} \sin \theta+\mathbf{X}_{\mathbf{2}} \cos \theta
\end{aligned}
$$

where $\cos \theta=\frac{1}{3}, \sin \theta=\frac{2 \sqrt{2}}{3}$. This gives us the following equations

$$
\begin{align*}
& 2 x_{11}-2 x_{12}+x_{13}=x_{11}-x_{21} 2 \sqrt{2} \tag{3}\\
& 2 x_{11}+x_{12}-2 x_{13}=x_{12}-x_{22} 2 \sqrt{2} \tag{4}\\
& x_{11}+2 x_{12}+2 x_{13}=x_{13}-x_{23} 2 \sqrt{2} \tag{5}\\
& 2 x_{21}-2 x_{22}+x_{23}=x_{11} 2 \sqrt{2}+x_{21} \tag{6}\\
& 2 x_{21}+x_{22}-2 x_{23}=x_{12} 2 \sqrt{2}+x_{22} \tag{7}\\
& x_{21}+2 x_{22}+2 x_{23}=x_{13} 2 \sqrt{2}+x_{23} \tag{8}
\end{align*}
$$

Adding the last 3 equations, we get $\sqrt{2} x_{21}=x_{11}+x_{12}+x_{13}$. Subtracting equation (6) from (8), $\sqrt{2} x_{22}=x_{13}-x_{11}$, and from (7) $\sqrt{2} x_{23}=x_{11}-x_{12}+x_{13}$. Substituting these in the first 3 equations and simplifying, we get $x_{11}=-x_{13}$. Setting $x_{11}=0, x_{12}=1$, we get $(0,1,0),\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)$ as a possible solution for $\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}$.

Putting these together we get

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & 1 \\
1 & 0 & 0 \\
0 & -\frac{1}{\sqrt{2}} & 1
\end{array}\right)
$$

We can now verify that $\mathbf{O P}=\mathbf{P}\left(\begin{array}{ccc}\frac{1}{3} & \frac{2 \sqrt{2}}{3} & 0 \\ -\frac{2 \sqrt{2}}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$

