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Question 1(a) In R4 let W1 be the space generated by {(1, 1, 0,−1), (2, 4, 6, 0)} and let W2

be space generated by {(−1,−2,−2, 2), (4, 6, 4,−6), (1, 3, 4,−3)}. Find a basis for the space
W1 +W2.

Solution. Let v1 = (1, 1, 0,−1), v2 = (2, 4, 6, 0), v3 = (−1,−2,−2, 2), v4 = (4, 6, 4,−6), v5 =
(1, 3, 4,−3). Since w ∈ W1 +W2 can be written as w = w1 + w2, and w1 = α1v1 + α2v2

and w2 = α3v3 + α4v4 + α5v5, it follows that w is a linear combination of vi ⇒ W1 +W2

is generated by {vi, 1 ≤ i ≤ 5}. Thus a maximal independent subset of {vi, 1 ≤ i ≤ 5} will
be a basis of W1 +W2.

Clearly v1 and v2 are linearly independent. If possible, let v3 = λ1v1 + λ2v2, then the
four equations

λ1 + 2λ2 = −1

λ1 + 4λ2 = −2

0λ1 + 6λ2 = −2

−λ1 + 0λ2 = 2

should be consistent and provide us λ1, λ2. Clearly the third and fourth equations give us
λ1 = −2, λ2 = −1

3
which do not satisfy the first two equations. Thus v1, v2, v3 are linearly

independent.
If possible let v4 = λ1v1 + λ2v2 + λ3v3. Then

λ1 + 2λ2 − λ3 = 4 (1a)

λ1 + 4λ2 − 2λ3 = 6 (1b)

0λ1 + 6λ2 − 2λ3 = 4 (1c)

−λ1 + 0λ2 + 2λ3 = −6 (1d)
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Adding (1b) and (1d) we get 4λ2 = 0, so λ2 = 0. Solving (1a) and (1b) we get λ3 = −2, λ1 =
2. These values satisfy all the four equations, so v4 = 2v1 − 2v3.

If possible let v5 = λ1v1 + λ2v2 + λ3v3. Then

λ1 + 2λ2 − λ3 = 1 (2a)

λ1 + 4λ2 − 2λ3 = 3 (2b)

0λ1 + 6λ2 − 2λ3 = 4 (2c)

−λ1 + 0λ2 + 2λ3 = −3 (2d)

Adding (2b) and (2d) we get 4λ2 = 0, so λ2 = 0. (2c) then gives us λ3 = −2, and
(2a) now gives λ1 = −1, which satisfies all equations. Thus v5 = −v1 − 2v3. Hence
{(1, 1, 0,−1), (2, 4, 6, 0), (−1,−2,−2, 2)} is a basis of W1 +W2.

Question 1(b) Let V be a finite dimensional vector space and v ∈ V ,v 6= 0. Show that
there exists a linear functional f on V such that f(v) 6= 0.

Solution. Complete v to a basis of V , say {v1 = v,v2, . . . ,vn}, where dimV = n. Define

f(vj) = δ1j and f(
n∑
j=1

ajvj) =
n∑
j=1

ajf(vj).

Clearly f is a linear functional over V , and f(v) = f(v1) = 1. Note that f(vj) = 0, j > 1
and if any w ∈ V ,w =

∑
i aivi, f(w) = a1.

Question 1(c) Let V = R3,v1,v2,v3 be a basis of V. Let T : V −→ V be such that
T(vi) = v1 + v2 + v3, 1 ≤ i ≤ 3. By writing the matrix of T w.r.t. another basis show that
the matrices

A =

1 1 1
1 1 1
1 1 1

 and B =

3 0 0
0 0 0
0 0 0


are similar.

Solution. Clearly A is the matrix of T w.r.t. the basis v1,v2,v3. Note that

[T(v1),T(v2),T(v3)] = (v1,v2,v3)A

Let

w1 = v1 + v2 + v3

w2 = v1 − v2

w3 = v2 − v3

⇒ T(w1) = 3w1,T(w2) = T(w3) = 0

We now show that w1,w2,w3 is a basis for V , i.e. these are linearly independent.
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Let αw1 + βw2 + γw3 = 0, then (α + β)v1 + (α − β + γ)v2 + (α − γ)v3 = 0. But
v1,v2,v3 are linearly independent, therefore α + β = 0, α − β + γ = 0, α − γ = 0 ⇒ α =
β = γ = 0⇒ w1,w2,w3 are linearly independent.

The matrix of T w.r.t. the basis w1,w2,w3 is clearly B. Note that the choice of
w1,w2,w3 is suggested by the shape of B.

If (w1,w2,w3) = (v1,v2,v3)P, |P| 6= 0 then B = P−1AP, so A and B are similar.

Question 2(a) Let V = R3 and T : V −→ V be a linear map defined by

T(x, y, z) = (x+ z,−2x+ y,−x+ 2y + z)

What is the matrix of T w.r.t. the basis (1, 0, 1), (−1, 1, 1), (0, 1, 1)? Using this matrix write
down the matrix of T with respect to the basis (0, 1, 2), (−1, 1, 1), (0, 1, 1).

Solution. Let v1 = (1, 0, 1),v2 = (−1, 1, 1),v3 = (0, 1, 1). T(x, y, z) = (x+z,−2x+y,−x+
2y+z) = αv1+βv2+γv3, say. This means α−β = x+z, β+γ = −2x+y, α+β+γ = −x+2y+
z. This implies α = x+y+z, β = y, γ = −2x. Thus T(x, y, z) = (x+y+z)v1 +yv2−2xv3.
Hence

[T(v1) T(v2) T(v3)] = [v1 v2 v3]

 2 1 2
0 1 1
−2 2 0


Let w1 = (0, 1, 2),w2 = (−1, 1, 1),w3 = (0, 1, 1). Then

[w1 w2 w3] = [v1 v2 v3]

1 0 0
1 1 0
0 0 1


Hence

[T(w1) T(w2) T(w3)] = [T(v1) T(v2) T(v3)]P

= [v1 v2 v3]AP

= [w1 w2 w3]P−1AP

where

A =

 2 1 2
0 1 1
−2 2 0

 , P =

1 0 0
1 1 0
0 0 1


Thus the matrix of T w.r.t. basis w1,w2,w3 is

P−1AP =

 1 0 0
−1 1 0
0 0 1

 2 1 2
0 1 1
−2 2 0

1 0 0
1 1 0
0 0 1

 =

 3 1 2
−2 0 −1
0 2 0
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Question 2(b) Let V and W be finite dimensional vector spaces such that dimV ≥ dimW.
Show that there is always a linear map of V onto W.

Solution. Let w1,w2, . . . ,wm be a basis of W , and v1,v2, . . . ,vn be a basis of V , n ≥ m.
Define

T(vi) = wi, i = 1, 2, . . . ,m
T(vi) = 0, i = m+ 1, . . . , n

and for any v ∈ V ,v =
∑n

i=1 αivi,T(v) =
∑m

i=1 αiT(vi).
Clearly T : V −→ W is linear. T is onto, since if w ∈ W ,w =

∑m
i=1 aiwi, then

T(
∑m

i=1 aivi) =
∑m

i=1 aiT(vi) = w, proving the result.

Question 2(c) Solve by Cramer’s rule

x+ y − 2z = 1

2x− 7z = 3

x+ y − z = 5

Solution.

D =

∣∣∣∣∣∣
1 1 −2
2 0 −7
1 1 −1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−1 −1 −2
−5 −7 −7
0 0 −1

∣∣∣∣∣∣ = −2

x =

˛̨̨̨
˛̨̨̨
˛
1 1 −2
3 0 −7
5 1 −1

˛̨̨̨
˛̨̨̨
˛

D
=

˛̨̨̨
˛̨̨̨
˛
1 1 −2
3 0 −7
4 0 1

˛̨̨̨
˛̨̨̨
˛

D
= −31
−2

= 31
2

y =

˛̨̨̨
˛̨̨̨
˛
1 1 −2
2 3 −7
1 5 −1

˛̨̨̨
˛̨̨̨
˛

D
=

˛̨̨̨
˛̨̨̨
˛
1 0 0
2 1 −3
1 4 1

˛̨̨̨
˛̨̨̨
˛

D
= 13
−2

= −13
2

z =

˛̨̨̨
˛̨̨̨
˛
1 1 1
2 0 3
1 1 5

˛̨̨̨
˛̨̨̨
˛

D
=

˛̨̨̨
˛̨̨̨
˛
1 1 1
2 0 3
0 0 4

˛̨̨̨
˛̨̨̨
˛

D
= −8
−2

= 4

Question 3(a) Find the inverse of the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


by computing its characteristic polynomial.
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Solution. The characteristic polynomial of A is

|A− λI| =

∣∣∣∣∣∣∣∣
−λ 1 0 0
0 −λ 1 0
0 0 −λ 1
1 0 0 −λ

∣∣∣∣∣∣∣∣
= −λ[−λ3]− 1[1] = λ4 − 1 = 0

Thus by the Cayley-Hamilton theorem, A4 = I, so A−1 = A3.

A2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



A3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 = A−1

Question 3(b) If A and B are n × n matrices such that AB = BA, show that AB and
BA have a common characteristic vector.

Solution. Let λ be any eigenvalue of A and let Vλ be the eigenspace of A corresponding to λ.
We show that B(Vλ) ⊆ Vλ. Let v ∈ Vλ, then A(Bv) = B(Av) = B(λv) = λBv⇒ Bv ∈ Vλ.

Consider B∗ : Vλ −→ Vλ such that B∗(v) = B(v) — note that B∗ is a restriction of B
to Vλ and we have already shown that B(Vλ) ⊆ Vλ.

Let µ be an eigenvalue of B∗, then µ is also an eigenvalue of B (because a basis of Vλ can be
extended to a basis of V , and in this basis B =

(
B∗ C
0 D

)
for some matrices C,D). Let v ∈ Vλ

be an eigenvector of B∗ corresponding to µ, by definition v 6= 0. Then Bv = B∗v = µv.
Thus A and B have a common eigenvector v, note that Av = λv as v ∈ Vλ.

Question 3(c) Reduce to canonical form the orthogonal matrix

O =

2
3
−2

3
1
3

2
3

1
3
−2

3
1
3

2
3

2
3


Solution. Before solving this particular problem, we present a general discussion about

orthogonal matrices. An orthogonal matrix satisfies O′O = I, so its determinant is 1 or -1,
here we focus on the case where |O| = 1. If λ is an eigenvalue of O and x a corresponding
eigenvector, then |λ|2x′x = (Ox)′Ox = x′O′Ox = x′x, so |λ| = 1. Since the characteristic
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polynomial has real coefficients, the eigenvalues must be real or in complex conjugate pairs.
Thus for a matrix of order 3, at least one eigenvalue is real, and must be 1 or -1. Since
|O| = 1, one real value must be 1, and the three possibilities are {1, 1, 1}, {1,−1,−1} and
{1, eiθ, e−iθ}.

Here we consider the third case, as the given matrix has 1 and 1
3
± i2

√
2

3
as eigenvalues,

proved later.
Let Z = X1 + iX2 be an eigenvector corresponding to the eigenvalue eiθ. Let X3 be

the eigenvector corresponding to the eigenvalue 1. Since Z and X3 correspond to different
eigenvalues, these are orthogonal, i.e. Z′X3 = (X′1 + iX′2)X3 = 0⇒ X′1X3 = 0,X′2X3 = 0.
Note that X1,X2,X3 are real vectors. Since OZ = eiθZ = (cos θ + i sin θ)(X1 + iX2).
Equating real and imaginary parts we get

OX1 = X1 cos θ −X2 sin θ

OX2 = X1 sin θ + X2 cos θ

∴ X′1O
′OX1 = (X′1 cos θ −X′2 sin θ)(X1 cos θ −X2 sin θ)

⇒ X′1X1 = X′1X1 cos2 θ −X′2X1 cos θ sin θ −X′1X2 sin θ cos θ + X′2X2 sin2 θ

⇒ 0 = X′1X1 sin2 θ −X′2X2 sin2 θ + 2X′1X2 cos θ sin θ

⇒ 0 = X′1X1 sin θ −X′2X2 sin θ + 2X′1X2 cos θ (1)

(Note that sin θ 6= 0 since we are considering the case where eiθ is complex.) Similarly

X′2O
′OX1 = (X′1 sin θ + X′2 cos θ)(X1 cos θ −X2 sin θ)

⇒ X′2X1 = X′1X1 sin θ cos θ −X′1X2 sin2 θ −X′2X2 sin θ cos θ + X′2X1 cos2 θ

⇒ 0 = X′1X1 cos θ −X′1X2 cos θ − 2X′1X2 sin θ (2)

Multiplying (1) by sin θ and (2) by cos θ and adding, we get X′1X1−X′2X2 = 0 or X′1X1 =
X′2X2, so from (2), X1X2 = 0, i.e. X1,X2 are orthogonal.

Thus X1,X2,X3 are mutually orthogonal. We can assume that X′1X1 = X′2X2 = 1,
replacing Z by λZ, λ ∈ R if necessary. Similarly we can take X′3X3 = 1. Let P = [X1 X2 X3]
so that P′P = I. Now

O[X1 X2 X3] = [X1 cos θ −X2 sin θ,X1 sin θ + X2 cos θ,X3]

= [X1 X2 X3]

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


⇒ P−1OP = P′OP =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


which is the canonical form of O when the eigenvalues are 1, eiθ, e−iθ.
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Solution of given problem.

O =

2
3
−2

3
1
3

2
3

1
3
−2

3
1
3

2
3

2
3


|O− λI| =

∣∣∣∣∣∣
2
3
− λ −2

3
1
3

2
3

1
3
− λ −2

3
1
3

2
3

2
3
− λ

∣∣∣∣∣∣ =
1

27

∣∣∣∣∣∣
2− 3λ −2 1

2 1− 3λ −2
1 2 2− 3λ

∣∣∣∣∣∣
=

1

27
[(2− 3λ)2(1− 3λ) + 4(2− 3λ) + 1(3 + 3λ) + 2(6− 6λ)]

= − 1

27
[27λ3 − 45λ2 + 45λ− 27]

= −1

3
[(λ− 1)(3λ2 − 2λ− 3)]

Thus λ = 1, 1
3
± i2

√
2

3
are eigenvalues of O.

Thus the canonical form of O is derived from above, where cos θ = 1
3
, sin θ = 2

√
2

3
: 1

3
2
√

2
3

0

−2
√

2
3

1
3

0
0 0 1


The matrix P can be determined as follows (this is not needed for this problem, but is

given for completeness):

1. Let (x1, x2, x3) be an eigenvector for λ = 1, then

−1

3
x1 −

2

3
x2 +

1

3
x3 = 0

2

3
x1 −

2

3
x2 −

2

3
x3 = 0

1

3
x1 +

2

3
x2 −

1

3
x3 = 0

Thus x2 = 0, x1 − x3 = 0, so we can take (1, 0, 1) as an eigenvector.

2. The vectors X1,X2 in the above discussion are determined by the requirements

OX1 = X1 cos θ −X2 sin θ

OX2 = X1 sin θ + X2 cos θ
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where cos θ = 1
3
, sin θ = 2

√
2

3
. This gives us the following equations

2x11 − 2x12 + x13 = x11 − x212
√

2 (3)

2x11 + x12 − 2x13 = x12 − x222
√

2 (4)

x11 + 2x12 + 2x13 = x13 − x232
√

2 (5)

2x21 − 2x22 + x23 = x112
√

2 + x21 (6)

2x21 + x22 − 2x23 = x122
√

2 + x22 (7)

x21 + 2x22 + 2x23 = x132
√

2 + x23 (8)

Adding the last 3 equations, we get
√

2x21 = x11 + x12 + x13. Subtracting equation (6)
from (8),

√
2x22 = x13− x11, and from (7)

√
2x23 = x11− x12 + x13. Substituting these

in the first 3 equations and simplifying, we get x11 = −x13. Setting x11 = 0, x12 = 1,
we get (0, 1, 0), ( 1√

2
, 0,− 1√

2
) as a possible solution for X1,X2.

Putting these together we get

P =

0 1√
2

1

1 0 0
0 − 1√

2
1



We can now verify that OP = P

 1
3

2
√

2
3

0

−2
√

2
3

1
3

0
0 0 1
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