UPSC Civil Services Main 1997 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

1 Linear Algebra

Question 1(a) Let \mathcal{V} be the vector space of polynomials over \mathbb{R}. Find a basis and the dimension of $\mathcal{W} \subseteq \mathcal{V}$ spanned by

$$
\begin{aligned}
& v_{1}=t^{3}-2 t^{2}+4 t+1 \\
& v_{2}=2 t^{3}-3 t^{2}+9 t-1 \\
& v_{3}=t^{3}+6 t-5 \\
& v_{4}=2 t^{3}-5 t^{2}+7 t+5
\end{aligned}
$$

Solution. v_{1} and v_{2} are linearly independent, because if $\alpha v_{1}+\beta v_{2}=0$, then $\alpha+2 \beta=$ $0,-2 \alpha-3 \beta=0,4 \alpha+9 \beta=0, \alpha-\beta=0 \Rightarrow \alpha=\beta=0$.
v_{3} depends linearly on v_{1}, v_{2} - if $\alpha v_{1}+\beta v_{2}=v_{3}$, then $\alpha+2 \beta=1,-2 \alpha-3 \beta=$ $0,4 \alpha+9 \beta=6, \alpha-\beta=-5 \Rightarrow \alpha=-3, \beta=2$ which satisfy all the equations. Thus $v_{3}=-3 v_{1}+2 v_{2}$.
v_{4} depends linearly on v_{1}, v_{2} - if $\alpha v_{1}+\beta v_{2}=v_{4}$, then $\alpha+2 \beta=2,-2 \alpha-3 \beta=$ $-5,4 \alpha+9 \beta=7, \alpha-\beta=5 \Rightarrow \alpha=4, \beta=-1$ which satisfy all the equations. Thus $v_{4}=4 v_{1}-v_{2}$.

Thus $\operatorname{dim}_{\mathbb{R}} \mathcal{W}=2$ and v_{1}, v_{2} is a basis of \mathcal{W}.
Question $\mathbf{1}(\mathbf{b})$ Verify that $\mathbf{T}\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}, x_{2}\right)$ is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3}. Find its range, rank, null space and nullity.

Solution. Let $\mathbf{x}=\left(x_{1}, x_{2}\right), \mathbf{y}=\left(y_{1}, y_{2}\right)$. Then

$$
\begin{aligned}
\mathbf{T}(\alpha \mathbf{x}+\beta \mathbf{y}) & =\mathbf{T}\left(\alpha x_{1}+\beta y_{1}, \alpha x_{2}+\beta y_{2}\right) \\
& =\left(\alpha x_{1}+\beta y_{1}+\alpha x_{2}+\beta y_{2}, \alpha x_{1}+\beta y_{1}-\alpha x_{2}-\beta y_{2}, \alpha x_{2}+\beta y_{2}\right) \\
& =\left(\alpha\left(x_{1}+x_{2}\right), \alpha\left(x_{1}-x_{2}\right), \alpha x_{2}\right)+\left(\beta\left(y_{1}+y_{2}\right), \beta\left(y_{1}-y_{2}\right), \beta y_{2}\right) \\
& =\alpha \mathbf{T}\left(x_{1}, x_{2}\right)+\beta \mathbf{T}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

Thus \mathbf{T} is linear.

$$
\begin{aligned}
& \mathbf{T}\left(\mathbf{e}_{1}\right)=\mathbf{T}(1,0)=(1,1,0) \\
& \mathbf{T}\left(\mathbf{e}_{2}\right)=\mathbf{T}(0,1)=(1,-1,1)
\end{aligned}
$$

Clearly $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right), \mathbf{T}\left(\mathbf{e}_{2}\right)$ are linearly independent. Since $T\left(\mathbb{R}^{2}\right)$ is generated by $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)$ and $\mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right)$, the rank of \mathbf{T} is 2 .

The range of $\mathbf{T}=\left\{\alpha \mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)+\beta \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right), \alpha, \beta \in \mathbb{R}\right\}$

$$
\begin{aligned}
& =\{\alpha(1,1,0)+\beta(1,-1,1)\} \\
& =\{(\alpha+\beta, \alpha-\beta, \beta) \mid \alpha, \beta \in \mathbb{R}\}
\end{aligned}
$$

To find the null space of \mathbf{T}, if $\mathbf{T}\left(x_{1}, x_{2}\right)=(0,0,0)$, then $x_{1}+x_{2}=0, x_{1}-x_{2}=0, x_{2}=0$, so $x_{1}=x_{2}=0$. Thus the null space of \mathbf{T} is $\{\mathbf{0}\}$, and nullity $\mathbf{T}=0$.

Question $\mathbf{1}(\mathbf{c})$ Let \mathcal{V} be the space of 2×2 matrices over \mathbb{R}. Determine whether the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{V}$ are dependent where

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{cc}
3 & -1 \\
2 & 2
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{cc}
1 & -5 \\
-4 & 0
\end{array}\right)
$$

Solution. If $\alpha \mathbf{A}+\beta \mathbf{B}+\gamma \mathbf{C}=0$, then

$$
\begin{array}{r}
\alpha+3 \beta+\gamma=0 \\
2 \alpha-\beta-5 \gamma=0 \\
3 \alpha+2 \beta-4 \gamma=0 \\
\alpha+2 \beta=0 \tag{4}
\end{array}
$$

From (4), we get $\alpha=-2 \beta$. This, together with (3) gives $\gamma=-\beta$. These satisfy (1) and (2) also, so taking $\beta=1, \alpha=-2, \gamma=-1$ gives us $-2 \mathbf{A}+\mathbf{B}-\mathbf{C}=0$. Thus $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are dependent.

Question 2(a) Let A be an $n \times n$ matrix such that each diagonal entry is μ and each off-diagonal entry is 1. If $\mathbf{B}=\lambda \mathbf{A}$ is orthogonal, determine λ, μ.

Solution. Clearly \mathbf{A} is symmetric. Let $\mathbf{A}=\left(a_{i j}\right) . \quad \mathbf{B}^{\prime} \mathbf{B}=\mathbf{B B}^{\prime}=\lambda^{2} \mathbf{A}^{2}=\mathbf{I} \Longrightarrow$ $\sum_{k=1}^{n} \lambda^{2} a_{i k} a_{k j}=\delta_{i j}$

Taking $i=j=1$, we get $\lambda^{2}\left(\mu^{2}+n-1\right)=1$ Taking $i=1, j=2$, we get $\lambda^{2}(2 \mu+n-2)=0$. Thus $\mu=-(n-2) / 2$ and $\lambda^{2}\left[(n-2)^{2} / 4+n-1\right]=1$. Simplifying, $\lambda^{2}\left[n^{2}-4 n+4+4 n-4\right] / 4=1$, which means $\lambda^{2}=\frac{4}{n^{2}}$, or $\lambda= \pm \frac{2}{n}$.

Question 2(b) Show that

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & 0 \\
2 & 2 & 3
\end{array}\right)
$$

is diagonalizable over \mathbb{R}. Find \mathbf{P} such that $\mathbf{P}^{-1} A P$ is diagonal and hence find \mathbf{A}^{25}.
Solution. Characteristic equation of \mathbf{A} is

$$
\begin{aligned}
\left|\begin{array}{ccc}
2-x & -1 & 0 \\
-1 & 2-x & 0 \\
2 & 2 & 3-x
\end{array}\right| & =0 \\
\Rightarrow \quad(2-x)(2-x)(3-x)+1(-(3-x)) & =0 \\
(3-x)\left(4-4 x+x^{2}-1\right) & =0
\end{aligned}
$$

Thus the eigenvalues are $3,3,1$.
Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an eigenvector for $\lambda=1$.

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $x_{1}-x_{2}=0,-x_{1}+x_{2}=0,2 x_{1}+2 x_{2}+2 x_{3}=0$. Take $x_{1}=1$, then $x_{2}=1, x_{3}=-2$, so $(1,1,-2)$ is an eigenvector with eigenvalue 1 .

Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an eigenvector for $\lambda=3$.

$$
\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-1 & -1 & 0 \\
2 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $x_{1}+x_{2}=0$. Take $x_{1}=1, x_{3}=0$, then $x_{2}=-1$, so $(1,-1,0)$ is an eigenvector with eigenvalue 3 . Take $x_{1}=0, x_{3}=1$, then $x_{2}=0$, so ($0,0,1$) is also an eigenvector for eigenvalue 3.

Let $\mathbf{P}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ -2 & 0 & 1\end{array}\right)$ then $\mathbf{A P}=\mathbf{P}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$ or $\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right)$
Now $\mathbf{P}^{-1} \mathbf{A}^{25} \mathbf{P}=\left(\mathbf{P}^{-1} \mathbf{A P}\right)^{25}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3^{25} & 0 \\ 0 & 0 & 3^{25}\end{array}\right)$. Thus $\mathbf{A}^{25}=\mathbf{P}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3^{25} & 0 \\ 0 & 0 & 3^{25}\end{array}\right) \mathbf{P}^{-1}$
$|\mathbf{P}|=-2$, so $\mathbf{P}^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & 1 & 1\end{array}\right)$.

$$
\begin{aligned}
\mathbf{A}^{25} & =\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3^{25} & 0 \\
0 & 0 & 3^{25}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 3^{25} & 0 \\
1 & -3^{25} & 0 \\
-2 & 0 & 3^{25}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1+3^{25}}{2^{25}} & \frac{1-3^{25}}{2} & 0 \\
\frac{1+3^{25}}{2} & 0 \\
-1+3^{25} & -1+3^{25} & 3^{25}
\end{array}\right)
\end{aligned}
$$

Question 2(c) Let $\mathbf{A}=\left[a_{i j}\right]$ be a square matrix of order n such that $\left|a_{i j}\right| \leq M$. Let λ be an eigenvalue of \mathbf{A}, show that $|\lambda| \leq n M$.

Solution. We first prove the following:
Lemma: If $\mathbf{A}=\left[a_{i j}\right]$ and $\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right| \leq a_{i i}$ then $|\mathbf{A}| \neq 0$.
If $|\mathbf{A}|=0$ then there exist $x_{1}, \ldots, x_{n} \in \mathbb{C}$ not all zero such that

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =0 \\
\ldots & =0 \\
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} & =0 \\
\ldots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} & =0
\end{aligned}
$$

Let $\left|x_{i}\right|=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)$, so $\left|\frac{x_{j}}{x_{i}}\right| \leq 1$ for all j.

$$
\begin{aligned}
0 & =\left|a_{i i}-\left(-a_{i 1} \frac{x_{1}}{x_{i}}-a_{i 2} \frac{x_{2}}{x_{i}}-\ldots-a_{i n} \frac{x_{n}}{x_{i}}\right)\right| \\
& \geq\left|a_{i i}\right|-\left|a_{i 1} \frac{x_{1}}{x_{i}}+a_{i 2} \frac{x_{2}}{x_{i}}+\ldots+a_{i n} \frac{x_{n}}{x_{i}}\right| \\
& \geq\left|a_{i i}\right|-\left|a_{i 1}\right|-\left|a_{i 2}\right|-\ldots-\left|a_{i n}\right|
\end{aligned}
$$

which contradicts the premise $\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right| \leq a_{i i}$ Thus $|\mathbf{A}| \neq 0$.

Now the lemma tells us that if $\left|\lambda-a_{i i}\right|>\sum_{\substack{j=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$ then $|\lambda \mathbf{I}-\mathbf{A}| \neq 0$, so λ is not an eigenvalue of \mathbf{A}. Thus $|\lambda| \leq\left|\lambda-a_{i i}\right|+\left|a_{i i}\right| \leq \sum_{j=1}^{n}\left|a_{i j}\right| \leq n M$ as desired.

Question 3(a) Define a positive definite matrix and show that a positive definite matrix is always non-singular. Show that the converse is not always true.

Solution. Let A be an $n \times n$ real symmetric matrix. A is said to be positive definite if the associated quadtratic form

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right) \mathbf{A}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)>0
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq(0,0, \ldots, 0)$ in \mathbb{R}^{n}.
If $|\mathbf{A}|=0$ then rank $\mathbf{A}<n$, which means that columns of \mathbf{A} i.e. $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}$ are linearly dependent i.e. there exist real numbers $x_{1}, x_{2}, \ldots, x_{n}$ not all zero such that

$$
x_{1} \mathbf{c}_{\mathbf{1}}+x_{2} \mathbf{c}_{\mathbf{2}}+\ldots+x_{n} \mathbf{c}_{\mathbf{n}}=\mathbf{A}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)=\mathbf{0} \Longrightarrow\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right) \mathbf{A}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)=0
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq(0,0, \ldots, 0)$, which means that \mathbf{A} is not positive definite. Thus \mathbf{A} is positive definite $\Longrightarrow|\mathbf{A}| \neq 0$.

The converse is not true. Take

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

then $|\mathbf{A}|=-1$, but

$$
\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=-1
$$

so \mathbf{A} is not positive definite.

Question 3(b) Find the eigenvalues and their corresponding eigenvectors for the matrix

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)
$$

Solution. The characteristic equation for \mathbf{A} is

$$
\begin{aligned}
0 & =|\mathbf{A}-x \mathbf{I}| \\
& =\left(\begin{array}{ccc}
6-x & -2 & 2 \\
-2 & 3-x & -1 \\
2 & -1 & 3-x
\end{array}\right) \\
& =(6-x)\left((3-x)^{2}-1\right)+2(-6+2 x+2)+2(2-6+2 x) \\
& =(6-x)\left(9-6 x+x^{2}\right)-6+x-8+4 x-8+4 x \\
0 & =x^{3}-12 x^{2}+36 x-32 \\
& =(x-2)\left(x^{2}-10 x+16\right)
\end{aligned}
$$

Thus the eigenvalues are $2,2,8$.
Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an eigenvector for $\lambda=2$.

$$
\left(\begin{array}{ccc}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $4 x_{1}-2 x_{2}+2 x_{3}=0,-2 x_{1}+x_{2}-x_{3}=0,2 x_{1}-x_{2}+x_{3}=0$. Take $x_{1}=1, x_{2}=0$, then $x_{3}=-2$, so $(1,0,-2)$ is an eigenvector with eigenvalue 2 . Take $x_{1}=0, x_{2}=1$, then $x_{3}=1$, so $(0,1,1)$ is an eigenvector with eigenvalue 2 .

Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an eigenvector for $\lambda=8$.

$$
\left(\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\mathbf{0}
$$

Thus $-2 x_{1}-2 x_{2}+2 x_{3}=0,-2 x_{1}-5 x_{2}-x_{3}=0,2 x_{1}-x_{2}-5 x_{3}=0$. From the last two, we get $x_{2}+x_{3}=0$, and from the first we get $x_{1}=2 x_{3}$. Take $x_{3}=1$, then $x_{2}=-1, x_{1}=2$, so $(2,-1,1)$ is an eigenvector with eigenvalue 8 .

Question 3(c) Find \mathbf{P} invertible such that \mathbf{P} reduces $Q(x, y, z)=2 x y+2 y z+2 z x$ to its canonical form.

Solution. The matrix of $Q(x, y, z)$ is

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

which has all diagonal entries 0 , so we cannot complete squares right away.

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Add the second row to the first and the second column to the first.

$$
\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Subtract $\frac{1}{2} R_{1}$ from R_{2} and $\frac{1}{2} C_{1}$ from C_{2}.

$$
\left(\begin{array}{ccc}
2 & 0 & 2 \\
0 & -\frac{1}{2} & 0 \\
2 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
1 & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Subtract R_{1} from R_{3} and C_{1} from C_{3}.

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & -2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-1 & -1 & 1
\end{array}\right) \mathbf{A}\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
1 & \frac{1}{2} & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Thus $\mathbf{P}=\left(\begin{array}{ccc}1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1\end{array}\right)$ and $\mathbf{P}^{\prime} \mathbf{A P}=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -2\end{array}\right)$
So $Q(x, y, z) \longrightarrow 2 X^{2}-\frac{1}{2} Y^{2}-2 Z^{2}$.
Alternative Solution. Let $x=X, y=X+Y, z=Z$

$$
\begin{aligned}
Q(x, y, z) & =2 X^{2}+2 X Y+2 Z X+2 Z Y+2 Z X \\
& =2\left[X^{2}+X Y+2 Z X+Z Y\right] \\
& =2\left[\left(X+\frac{Y}{2}+Z\right)^{2}-\frac{Y^{2}}{4}-Z^{2}\right]
\end{aligned}
$$

Put $\xi=X+Y / 2+Z, \eta=Y, \zeta=Z$, so $X=\xi-\eta / 2-\zeta, Y=\eta, Z=\zeta$.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -1 \\
1 & \frac{1}{2} & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right)
$$

Thus $Q(x, y, z) \longrightarrow 2 \xi^{2}-\eta^{2} / 2-2 \zeta^{2}$, and $\mathbf{P}=\left(\begin{array}{ccc}1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1\end{array}\right)$ as before. Note that we put $x=X, y=X+Y, z=Z$ to create one square term to complete the squares.

