UPSC Civil Services Main 1997 - Mathematics Linear Algebra

Sunder Lal

Retired Professor of Mathematics Panjab University Chandigarh

June 14, 2007

1 Linear Algebra

Question 1(a) Let \mathcal{V} be the vector space of polynomials over \mathbb{R} . Find a basis and the dimension of $\mathcal{W} \subseteq \mathcal{V}$ spanned by

$$v_{1} = t^{3} - 2t^{2} + 4t + 1$$

$$v_{2} = 2t^{3} - 3t^{2} + 9t - 1$$

$$v_{3} = t^{3} + 6t - 5$$

$$v_{4} = 2t^{3} - 5t^{2} + 7t + 5$$

Solution. v_1 and v_2 are linearly independent, because if $\alpha v_1 + \beta v_2 = 0$, then $\alpha + 2\beta = 0$, $-2\alpha - 3\beta = 0$, $4\alpha + 9\beta = 0$, $\alpha - \beta = 0 \Rightarrow \alpha = \beta = 0$.

 v_3 depends linearly on v_1, v_2 — if $\alpha v_1 + \beta v_2 = v_3$, then $\alpha + 2\beta = 1$, $-2\alpha - 3\beta = 0$, $4\alpha + 9\beta = 6$, $\alpha - \beta = -5 \Rightarrow \alpha = -3$, $\beta = 2$ which satisfy all the equations. Thus $v_3 = -3v_1 + 2v_2$.

 v_4 depends linearly on v_1, v_2 — if $\alpha v_1 + \beta v_2 = v_4$, then $\alpha + 2\beta = 2$, $-2\alpha - 3\beta = -5$, $4\alpha + 9\beta = 7$, $\alpha - \beta = 5 \Rightarrow \alpha = 4$, $\beta = -1$ which satisfy all the equations. Thus $v_4 = 4v_1 - v_2$.

Thus $\dim_{\mathbb{R}} \mathcal{W} = 2$ and v_1, v_2 is a basis of \mathcal{W} .

Question 1(b) Verify that $\mathbf{T}(x_1, x_2) = (x_1 + x_2, x_1 - x_2, x_2)$ is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . Find its range, rank, null space and nullity.

Solution. Let $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2)$. Then

$$\mathbf{T}(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{T}(\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)$$

= $(\alpha x_1 + \beta y_1 + \alpha x_2 + \beta y_2, \alpha x_1 + \beta y_1 - \alpha x_2 - \beta y_2, \alpha x_2 + \beta y_2)$
= $(\alpha (x_1 + x_2), \alpha (x_1 - x_2), \alpha x_2) + (\beta (y_1 + y_2), \beta (y_1 - y_2), \beta y_2)$
= $\alpha \mathbf{T}(x_1, x_2) + \beta \mathbf{T}(y_1, y_2)$

Thus \mathbf{T} is linear.

$$\mathbf{T}(\mathbf{e_1}) = \mathbf{T}(1,0) = (1,1,0)$$

$$\mathbf{T}(\mathbf{e_2}) = \mathbf{T}(0,1) = (1,-1,1)$$

Clearly $\mathbf{T}(\mathbf{e_1})$, $\mathbf{T}(\mathbf{e_2})$ are linearly independent. Since $T(\mathbb{R}^2)$ is generated by $\mathbf{T}(\mathbf{e_1})$ and $\mathbf{T}(\mathbf{e_2})$, the rank of \mathbf{T} is 2.

The range of
$$\mathbf{T} = \{ \alpha \mathbf{T}(\mathbf{e_1}) + \beta \mathbf{T}(\mathbf{e_2}), \alpha, \beta \in \mathbb{R} \}$$

= $\{ \alpha(1, 1, 0) + \beta(1, -1, 1) \}$
= $\{ (\alpha + \beta, \alpha - \beta, \beta) \mid \alpha, \beta \in \mathbb{R} \}$

To find the null space of \mathbf{T} , if $\mathbf{T}(x_1, x_2) = (0, 0, 0)$, then $x_1 + x_2 = 0$, $x_1 - x_2 = 0$, $x_2 = 0$, so $x_1 = x_2 = 0$. Thus the null space of \mathbf{T} is $\{\mathbf{0}\}$, and nullity $\mathbf{T} = 0$.

Question 1(c) Let \mathcal{V} be the space of 2×2 matrices over \mathbb{R} . Determine whether the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{V}$ are dependent where

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & -1 \\ 2 & 2 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 1 & -5 \\ -4 & 0 \end{pmatrix}$$

Solution. If $\alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C} = 0$, then

$$\alpha + 3\beta + \gamma = 0 \tag{1}$$

$$2\alpha - \beta - 5\gamma = 0 \tag{2}$$

$$3\alpha + 2\beta - 4\gamma = 0 \tag{3}$$

$$\alpha + 2\beta = 0 \tag{4}$$

From (4), we get $\alpha = -2\beta$. This, together with (3) gives $\gamma = -\beta$. These satisfy (1) and (2) also, so taking $\beta = 1, \alpha = -2, \gamma = -1$ gives us $-2\mathbf{A} + \mathbf{B} - \mathbf{C} = 0$. Thus $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are dependent.

Question 2(a) Let **A** be an $n \times n$ matrix such that each diagonal entry is μ and each off-diagonal entry is 1. If $\mathbf{B} = \lambda \mathbf{A}$ is orthogonal, determine λ, μ .

Solution. Clearly **A** is symmetric. Let $\mathbf{A} = (a_{ij})$. $\mathbf{B'B} = \mathbf{BB'} = \lambda^2 \mathbf{A}^2 = \mathbf{I} \Longrightarrow \sum_{k=1}^{n} \lambda^2 a_{ik} a_{kj} = \delta_{ij}$

Taking i = j = 1, we get $\lambda^2(\mu^2 + n - 1) = 1$ Taking i = 1, j = 2, we get $\lambda^2(2\mu + n - 2) = 0$. Thus $\mu = -(n-2)/2$ and $\lambda^2[(n-2)^2/4 + n - 1] = 1$. Simplifying, $\lambda^2[n^2 - 4n + 4 + 4n - 4]/4 = 1$, which means $\lambda^2 = \frac{4}{n^2}$, or $\lambda = \pm \frac{2}{n}$. Question 2(b) Show that

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3 \end{array} \right)$$

is diagonalizable over \mathbb{R} . Find \mathbf{P} such that $\mathbf{P}^{-1}AP$ is diagonal and hence find \mathbf{A}^{25} .

Solution. Characteristic equation of A is

$$\begin{vmatrix} 2-x & -1 & 0\\ -1 & 2-x & 0\\ 2 & 2 & 3-x \end{vmatrix} = 0$$

$$\Rightarrow (2-x)(2-x)(3-x) + 1(-(3-x)) = 0$$

$$(3-x)(4-4x+x^2-1) = 0$$

Thus the eigenvalues are 3, 3, 1.

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 1$.

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $x_1 - x_2 = 0$, $-x_1 + x_2 = 0$, $2x_1 + 2x_2 + 2x_3 = 0$. Take $x_1 = 1$, then $x_2 = 1$, $x_3 = -2$, so (1, 1, -2) is an eigenvector with eigenvalue 1.

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 3$.

$$\left(\begin{array}{rrrr} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 2 & 2 & 0 \end{array}\right) \left(\begin{array}{r} x_1 \\ x_2 \\ x_3 \end{array}\right) = \mathbf{0}$$

Thus $x_1 + x_2 = 0$. Take $x_1 = 1, x_3 = 0$, then $x_2 = -1$, so (1, -1, 0) is an eigenvector with eigenvalue 3. Take $x_1 = 0, x_3 = 1$, then $x_2 = 0$, so (0, 0, 1) is also an eigenvector for eigenvalue 3.

Let
$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$
 then $\mathbf{AP} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ or $\mathbf{P}^{-1}\mathbf{AP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
Now $\mathbf{P}^{-1}\mathbf{A}^{25}\mathbf{P} = (\mathbf{P}^{-1}\mathbf{AP})^{25} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3^{25} & 0 \\ 0 & 0 & 3^{25} \end{pmatrix}$. Thus $\mathbf{A}^{25} = \mathbf{P} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3^{25} & 0 \\ 0 & 0 & 3^{25} \end{pmatrix} \mathbf{P}^{-1}$
 $|\mathbf{P}| = -2$, so $\mathbf{P}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

$$\begin{aligned} \mathbf{A}^{25} &= \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3^{25} & 0 \\ 0 & 0 & 3^{25} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 3^{25} & 0 \\ 1 & -3^{25} & 0 \\ -2 & 0 & 3^{25} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1+3^{25}}{2} & \frac{1-3^{25}}{2} & 0 \\ \frac{1-3^{25}}{2} & \frac{1+3^{25}}{2} & 0 \\ -1+3^{25} & -1+3^{25} & 3^{25} \end{pmatrix} \end{aligned}$$

Question 2(c) Let $\mathbf{A} = [a_{ij}]$ be a square matrix of order n such that $|a_{ij}| \leq M$. Let λ be an eigenvalue of \mathbf{A} , show that $|\lambda| \leq nM$.

Solution. We first prove the following:

Lemma: If $\mathbf{A} = [a_{ij}]$ and $\sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}| \le a_{ii}$ then $|\mathbf{A}| \ne 0$. If $|\mathbf{A}| = 0$ then there exist $x_1, \ldots, x_n \in \mathbb{C}$ not all zero such that

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

...
$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = 0$$

...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0$$

Let $|x_i| = \max(|x_1|, |x_2|, \dots, |x_n|)$, so $|\frac{x_j}{x_i}| \le 1$ for all j.

$$0 = \left| a_{ii} - \left(-a_{i1} \frac{x_1}{x_i} - a_{i2} \frac{x_2}{x_i} - \dots - a_{in} \frac{x_n}{x_i} \right) \right|$$

$$\geq \left| a_{ii} \right| - \left| a_{i1} \frac{x_1}{x_i} + a_{i2} \frac{x_2}{x_i} + \dots + a_{in} \frac{x_n}{x_i} \right|$$

$$\geq \left| a_{ii} \right| - \left| a_{i1} \right| - \left| a_{i2} \right| - \dots - \left| a_{in} \right|$$

which contradicts the premise $\sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}| \le a_{ii}$ Thus $|\mathbf{A}| \ne 0$.

Now the lemma tells us that if $|\lambda - a_{ii}| > \sum_{\substack{j=1 \ i \neq j}}^{n} |a_{ij}|$ then $|\lambda \mathbf{I} - \mathbf{A}| \neq 0$, so λ is not an eigenvalue of \mathbf{A} . Thus $|\lambda| \leq |\lambda - a_{ii}| + |a_{ii}| \leq \sum_{j=1}^{n} |a_{ij}| \leq nM$ as desired.

Question 3(a) Define a positive definite matrix and show that a positive definite matrix is always non-singular. Show that the converse is not always true.

Solution. Let A be an $n \times n$ real symmetric matrix. A is said to be positive definite if the associated quadtratic form

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} > 0$$

for all $(x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0)$ in \mathbb{R}^n .

If $|\mathbf{A}| = 0$ then rank $\mathbf{A} < n$, which means that columns of \mathbf{A} i.e. $\mathbf{c_1}, \mathbf{c_2}, \ldots, \mathbf{c_n}$ are linearly dependent i.e. there exist real numbers x_1, x_2, \ldots, x_n not all zero such that

$$x_1\mathbf{c_1} + x_2\mathbf{c_2} + \ldots + x_n\mathbf{c_n} = \mathbf{A}\begin{pmatrix} x_1\\ x_2\\ \ldots\\ x_n \end{pmatrix} = \mathbf{0} \Longrightarrow \begin{pmatrix} x_1 & x_2 & \ldots & x_n \end{pmatrix} \mathbf{A}\begin{pmatrix} x_1\\ x_2\\ \ldots\\ x_n \end{pmatrix} = \mathbf{0}$$

where $(x_1, x_2, \ldots, x_n) \neq (0, 0, \ldots, 0)$, which means that **A** is not positive definite. Thus **A** is positive definite $\implies |\mathbf{A}| \neq 0$.

The converse is not true. Take

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

then $|\mathbf{A}| = -1$, but

$$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = -1$$

so A is not positive definite.

Question 3(b) Find the eigenvalues and their corresponding eigenvectors for the matrix

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

Solution. The characteristic equation for A is

$$0 = |\mathbf{A} - x\mathbf{I}|$$

= $\begin{pmatrix} 6 - x & -2 & 2 \\ -2 & 3 - x & -1 \\ 2 & -1 & 3 - x \end{pmatrix}$
= $(6 - x)((3 - x)^2 - 1) + 2(-6 + 2x + 2) + 2(2 - 6 + 2x)$
= $(6 - x)(9 - 6x + x^2) - 6 + x - 8 + 4x - 8 + 4x$
$$0 = x^3 - 12x^2 + 36x - 32$$

= $(x - 2)(x^2 - 10x + 16)$

Thus the eigenvalues are 2, 2, 8.

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 2$.

$$\begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $4x_1 - 2x_2 + 2x_3 = 0$, $-2x_1 + x_2 - x_3 = 0$, $2x_1 - x_2 + x_3 = 0$. Take $x_1 = 1$, $x_2 = 0$, then $x_3 = -2$, so (1, 0, -2) is an eigenvector with eigenvalue 2. Take $x_1 = 0$, $x_2 = 1$, then $x_3 = 1$, so (0, 1, 1) is an eigenvector with eigenvalue 2.

Let (x_1, x_2, x_3) be an eigenvector for $\lambda = 8$.

$$\begin{pmatrix} -2 & -2 & 2\\ -2 & -5 & -1\\ 2 & -1 & -5 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \mathbf{0}$$

Thus $-2x_1 - 2x_2 + 2x_3 = 0$, $-2x_1 - 5x_2 - x_3 = 0$, $2x_1 - x_2 - 5x_3 = 0$. From the last two, we get $x_2 + x_3 = 0$, and from the first we get $x_1 = 2x_3$. Take $x_3 = 1$, then $x_2 = -1$, $x_1 = 2$, so (2, -1, 1) is an eigenvector with eigenvalue 8.

Question 3(c) Find **P** invertible such that **P** reduces Q(x, y, z) = 2xy + 2yz + 2zx to its canonical form.

Solution. The matrix of Q(x, y, z) is

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

which has all diagonal entries 0, so we cannot complete squares right away.

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Add the second row to the first and the second column to the first.

$$\begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Subtract $\frac{1}{2}R_1$ from R_2 and $\frac{1}{2}C_1$ from C_2 .

$$\begin{pmatrix} 2 & 0 & 2 \\ 0 & -\frac{1}{2} & 0 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Subtract R_1 from R_3 and C_1 from C_3 .

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -1 & -1 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

Thus $\mathbf{P} = \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \end{pmatrix}$ and $\mathbf{P}' \mathbf{A} \mathbf{P} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -2 \end{pmatrix}$
So $Q(x, y, z) \longrightarrow 2X^2 - \frac{1}{2}Y^2 - 2Z^2$.
Alternative Solution. Let $x = X, y = X + Y, z = Z$

$$Q(x, y, z) = 2X^{2} + 2XY + 2ZX + 2ZY + 2ZX$$

= 2[X² + XY + 2ZX + ZY]
= 2[(X + $\frac{Y}{2}$ + Z)² - $\frac{Y^{2}}{4}$ - Z²]

Put $\xi = X + Y/2 + Z, \eta = Y, \zeta = Z$, so $X = \xi - \eta/2 - \zeta, Y = \eta, Z = \zeta$. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix}$

Thus $Q(x, y, z) \longrightarrow 2\xi^2 - \eta^2/2 - 2\zeta^2$, and $\mathbf{P} = \begin{pmatrix} 1 & -\frac{1}{2} & -1 \\ 1 & \frac{1}{2} & -1 \\ 0 & 0 & 1 \end{pmatrix}$ as before. Note that we put x = X, y = X + Y, z = Z to create one square term to complete the squares.