UPSC Civil Services Main 1998 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question 1(a) Given two linearly independent vectors $(1,0,1,0)$ and $(0,-1,1,0)$ of \mathbb{R}^{4}, find a basis of \mathbb{R}^{4} which includes them.

Solution. Let $\mathbf{v}_{\mathbf{1}}=(1,0,1,0), \mathbf{v}_{\mathbf{2}}=(0,-1,1,0)$. Clearly these are linearly independent. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ be the standard basis. Then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}, \mathbf{e}_{4}$ generate \mathbb{R}^{4}. We have to find four vectors out of these which are linearly independent and include $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$.

If $\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}+\gamma \mathbf{e}_{\mathbf{1}}=0$, then $\alpha+\gamma=0,-\alpha=0, \alpha+\beta=0 \Rightarrow \alpha=\beta=\gamma=0$. Therefore $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{e}_{\mathbf{1}}$ are linearly independent.

We now show that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{4}$ are linearly independent. Let $\alpha \mathbf{v}_{\mathbf{1}}+\beta \mathbf{v}_{\mathbf{2}}+\gamma \mathbf{e}_{\mathbf{1}}+\delta \mathbf{e}_{4}=0$ then $\delta=0$, and therefore $\alpha=\beta=\gamma=0$ because $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{e}_{\mathbf{1}}$ are linearly independent.

Thus $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{4}$ is a basis of \mathbb{R}^{4}.
Note that $\mathbf{e}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}-\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{3}}=\mathbf{v}_{\mathbf{1}}-\mathbf{e}_{\mathbf{1}}$.
Question 1(b) If \mathcal{V} is a finite dimensional vector space over \mathbb{R} and if f and g are two linear transformations from \mathcal{V} to \mathbb{R} such that $f(\mathbf{v})=0$ implies $g(\mathbf{v})=0$, then prove that $g=\lambda f$ for some $\lambda \in \mathbb{R}$.

Solution. If $g=0$, take $\lambda=0$, so $g(\mathbf{v})=0=0 f(\mathbf{v})$ for all $\mathbf{v} \in \mathcal{V}$.
If $g \neq 0$, then $f \neq 0$. Thus $\exists \mathbf{v} \in \mathcal{V}$ such that $f(\mathbf{v}) \neq 0 \Rightarrow \exists \mathbf{w} \in \mathcal{V}$ such that $f(\mathbf{w})=1$ (Note that $f\left(\frac{\mathbf{v}}{f(\mathbf{v})}\right)=1$).

Thus $\mathcal{V} / \operatorname{ker} f \backsim \mathbb{R}$, or $\operatorname{dim}(\operatorname{ker} f)=n-1$. Similarly $\operatorname{ker} g$ has dimension $n-1$. In fact, $\operatorname{ker} f=\operatorname{ker} g \because \operatorname{ker} f \subseteq \operatorname{ker} g$ and $\operatorname{dim}(\operatorname{ker} f)=\operatorname{dim}(\operatorname{ker} g)$. Let $\left\{\mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of $\operatorname{ker} f$ and extend it to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ a basis of \mathcal{V}. Then $g=\lambda f$ with $\lambda=g\left(\mathbf{v}_{\mathbf{1}}\right) / f\left(\mathbf{v}_{\mathbf{1}}\right) \because$ if $\mathbf{v}=\alpha_{1} \mathbf{v}_{\mathbf{1}}+\ldots+\alpha_{n} \mathbf{v}_{\mathbf{n}}$, then $g(\mathbf{v})=\alpha_{1} g\left(\mathbf{v}_{\mathbf{1}}\right)=\alpha_{1} \lambda f\left(\mathbf{v}_{\mathbf{1}}\right)=\lambda f(\mathbf{v})$.

Question $\mathbf{1}(\mathbf{c})$ Let $\mathbf{T}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be defined by $\mathbf{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3},-c x_{1}-b x_{2}-a x_{3}\right)$ where a, b, c are fixed real numbers. Show that \mathbf{T} is a linear transformation of \mathbb{R}^{3} and that $\mathbf{A}^{3}+a \mathbf{A}^{2}+b \mathbf{A}+c \mathbf{I}=\mathbf{0}$ where \mathbf{A} is the matrix of \mathbf{T} w.r.t. the standard basis of \mathbb{R}^{3}.
Solution. Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$. Then

$$
\begin{aligned}
\mathbf{T}(\alpha \mathbf{x}+\beta \mathbf{y}) & =\left(\alpha x_{2}+\beta y_{2}, \alpha x_{3}+\beta x_{3},-c\left(\alpha x_{1}+\beta y_{1}\right)-b\left(\alpha x_{2}+\beta y_{2}\right)-a\left(\alpha x_{3}+\beta y_{3}\right)\right) \\
& =\alpha\left(x_{2}, x_{3},-c x_{1}-b x_{2}-a x_{3}\right)+\beta\left(y_{2}, y_{3},-c y_{1}-b y_{2}-a y_{3}\right) \\
& =\alpha \mathbf{T}(\mathbf{x})+\beta \mathbf{T}(\mathbf{y})
\end{aligned}
$$

Thus \mathbf{T} is linear.
Clearly

$$
\begin{aligned}
& \mathbf{T}(1,0,0)=(0,0,-c) \\
& \mathbf{T}(0,1,0)=(1,0,-b) \\
& \mathbf{T}(0,0,1)=(0,1,-a) \\
& \mathbf{A}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-c & -b & -a
\end{array}\right)
\end{aligned}
$$

The characteristic equation of \mathbf{A} is $|\mathbf{A}-\lambda \mathbf{I}|=0$.

$$
\begin{aligned}
\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & \lambda & 1 \\
-c & -b & -a-\lambda
\end{array}\right| & =0 \\
-\lambda^{2}(a+\lambda)-b \lambda-c & =0 \\
\lambda^{3}+a \lambda^{2}+b \lambda+c & =0
\end{aligned}
$$

Now by the Cayley-Hamilton theorem $\mathbf{A}^{3}+a \mathbf{A}^{2}+b \mathbf{A}+c \mathbf{I}=\mathbf{0}$.
Question 2(a) If \mathbf{A} and \mathbf{B} are two matrices of order 2×2 such that \mathbf{A} is skew-Hermitian and $\mathbf{A B}=\mathbf{B}$ then show that $\mathbf{B}=\mathbf{0}$.

Solution. We first of all prove that eigenvalues of skew-Hermitian matrices are 0 or pure imaginary. Let \mathbf{A} be skew-Hermitian, i.e. $\overline{\mathbf{A}}^{\prime}=-\mathbf{A}$ and let λ be its characteristic root. If \mathbf{x} is an eigenvector of λ, then

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\lambda \mathbf{x} \\
\Rightarrow \quad \overline{\mathbf{x}}^{\prime} \lambda \mathbf{x} & =\overline{\mathbf{x}}^{\prime} \mathbf{A} \mathbf{x} \\
& =-\overline{\mathbf{x}}^{\prime} \overline{\mathbf{A}}^{\prime} \mathbf{x} \\
& =-\overline{\mathbf{A x}}^{\prime} \mathbf{x} \\
& =-\bar{\lambda} \overline{\mathbf{x}}^{\prime} \mathbf{x}
\end{aligned}
$$

Thus $\lambda=-\bar{\lambda} \because \overline{\mathbf{x}}^{\prime} \mathbf{x} \neq 0$, showing that the real part of λ is 0 .
Now if $\mathbf{B} \neq \mathbf{0}$ and $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\boldsymbol{2}}$ are the columns of \mathbf{B}, then $\mathbf{c}_{\boldsymbol{1}} \neq \mathbf{0}$ or $\mathbf{c}_{\boldsymbol{2}} \neq \mathbf{0} . \mathbf{A B}=\mathbf{B}$ means that $\mathbf{A} \mathbf{c}_{\boldsymbol{1}}=\mathbf{c}_{\mathbf{1}}$ and $\mathbf{A} \mathbf{c}_{\boldsymbol{2}}=\mathbf{c}_{\boldsymbol{2}}$. Since either $\mathbf{c}_{\boldsymbol{1}} \neq \mathbf{0}$ or $\mathbf{c}_{\boldsymbol{2}} \neq \mathbf{0}, 1$ must be an eigenvalue of \mathbf{A}, which is not possible. Hence $\mathbf{c}_{\mathbf{1}}=\mathbf{0}$ and $\mathbf{c}_{\mathbf{2}}=\mathbf{0}$, which means $\mathbf{B}=\mathbf{0}$.

Question 2(b) If \mathbf{T} is a complex matrix of order 2×2 such that $\operatorname{tr} \mathbf{T}=\operatorname{tr} \mathbf{T}^{2}=0$, then show that $\mathbf{T}^{2}=\mathbf{0}$.

Solution. Let λ_{1}, λ_{2} be the eigenvalues of \mathbf{T}, then $\lambda_{1}^{2}, \lambda_{2}^{2}$ are the eigenvalues of \mathbf{T}^{2}. Given that

$$
\begin{aligned}
\operatorname{tr} \mathbf{T} & =\lambda_{1}+\lambda_{2}=0 \\
\operatorname{tr} \mathbf{T}^{2} & =\lambda_{1}^{2}+\lambda_{2}^{2}=0
\end{aligned}
$$

$0=\lambda_{1}^{2}+\lambda_{2}^{2}=\lambda_{1}^{2}+\left(-\lambda_{1}\right)^{2} \Rightarrow \lambda_{1}=0$ and from $\lambda_{1}+\lambda_{2}=0$ we get $\lambda_{1}=\lambda_{2}=0$. The characteristic equation of \mathbf{T} is $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)=0$, or $x^{2}=0$. By Cayley-Hamilton theorem, we immediately get $\mathbf{T}^{2}=\mathbf{0}$.

Question 2(c) Prove that a necessary and sufficient condition for an $n \times n$ real matrix \mathbf{A} to be similar to a diagonal matrix is that the set of characteristic vectors of \mathbf{A} includes a set of n linearly independent vectors.

Solution.

Necessity: By hypothesis there exists a nonsingular matrix \mathbf{P} such that

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

Let $\mathbf{P}=\left[\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{\mathbf{n}}\right]$, where each $\mathbf{c}_{\mathbf{i}}$ is an n-row column vector.

$$
\mathbf{A}\left[\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{\mathbf{n}}\right]=\left[\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{\mathbf{n}}\right] \mathbf{D}=\left[\lambda_{1} \mathbf{c}_{\mathbf{1}}, \lambda_{2} \mathbf{c}_{2}, \ldots, \lambda_{n} \mathbf{c}_{\mathbf{n}}\right]
$$

so $\mathbf{A} \mathbf{c}_{\mathbf{i}}=\lambda_{i} \mathbf{c}_{\mathbf{i}}$ for $i=1, \ldots, n$. Thus $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}$ are characteristic vectors of \mathbf{A} corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Since \mathbf{P} is nonsingular, $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}$ are linearly independent. Thus the set of characteristic vectors of \mathbf{A} includes a set of n linearly independent vectors.

Sufficiency: Let $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}$ be n linearly independent eigenvectors of \mathbf{A} corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Thus $\mathbf{A} \mathbf{c}_{\mathbf{i}}=\lambda_{i} \mathbf{c}_{\mathbf{i}}$ for $i=1, \ldots, n$. Let $\mathbf{P}=\left[\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}\right]$, then \mathbf{P} is nonsingular (otherwise 0 is an eigenvalue of \mathbf{P}, so $\exists \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \neq \mathbf{0}$ such that $\mathbf{P x}=\mathbf{0} \Rightarrow x_{1} \mathbf{c}_{\mathbf{1}}+\ldots+x_{n} \mathbf{c}_{\mathbf{n}}=\mathbf{0} \Rightarrow \mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}, \ldots, \mathbf{c}_{\mathbf{n}}$ are not linearly independent.). Clearly

$$
\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

Question 3(a) Let \mathbf{A} be a $m \times n$ matrix. Show that the sum of the rank and nullity of \mathbf{A} is n.

Solution. The matrix A can be regarded as a linear transformation A: $\mathcal{F}^{n} \longrightarrow \mathcal{F}^{m}$ where \mathcal{F} is the field to which the entries of \mathbf{A} belong, and the bases for $\mathcal{F}^{n}, \mathcal{F}^{m}$ are standard bases.

Let $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{W}$ be a linear transformation, where $\operatorname{dim}(\mathcal{V})=n, \operatorname{dim}(\mathcal{W})=m$. We shall show that $\operatorname{dim}(\mathbf{T}(\mathcal{V}))+\operatorname{dim}(\operatorname{kernel} \mathbf{T})=n$.

Take $\mathbf{v}_{\mathbf{n}-\mathbf{r}+\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ to be any basis of kernel \mathbf{T}, where $\operatorname{dim}($ kernel $\mathbf{T})=r$. Complete it to a basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}-\mathbf{r}+\mathbf{1}} \ldots, \mathbf{v}_{\mathbf{n}}$ of \mathcal{V}. We shall show that $\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \mathbf{T}\left(\mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)$ are linearly independent and generate $\mathbf{T}(\mathcal{V})$, thus $\operatorname{dim}(\mathbf{T}(\mathcal{V}))=n-r$.

If $\mathbf{w} \in \mathbf{T}(\mathcal{V})$, then $\exists \mathbf{v} \in \mathcal{V}$ such that $\mathbf{T}(\mathbf{v})=\mathbf{w}$. If $\mathbf{v}=\alpha_{1} \mathbf{v}_{\mathbf{1}}+\ldots+\alpha_{n} \mathbf{v}_{\mathbf{n}}, \alpha_{i} \in \mathcal{F}$, then $\mathbf{w}=\mathbf{T}(\mathbf{v})=\alpha_{1} \mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right)+\ldots+\alpha_{n-r} \mathbf{T}\left(\mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)$ because $\mathbf{T}\left(\mathbf{v}_{\mathbf{i}}\right)=\mathbf{0}$ for $i>n-r$. Thus $\mathbf{T}(\mathcal{V})$ is generated by $\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \mathbf{T}\left(\mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)$.

If $\alpha_{1} \mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right)+\ldots+\alpha_{n-r} \mathbf{T}\left(\mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)=\mathbf{0}$, then $\mathbf{T}\left(\alpha_{1} \mathbf{v}_{\mathbf{1}}+\ldots+\alpha_{n-r} \mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)=\mathbf{0}$. This implies $\alpha_{1} \mathbf{v}_{\mathbf{1}}+\ldots+\alpha_{n-r} \mathbf{v}_{\mathbf{n}-\mathbf{r}} \in \operatorname{kernel} \mathbf{T} \Rightarrow \alpha_{1} \mathbf{v}_{\mathbf{1}}+\ldots+\alpha_{n-r} \mathbf{v}_{\mathbf{n}-\mathbf{r}}=\alpha_{n-r+1} \mathbf{v}_{\mathbf{n}-\mathbf{r}+\mathbf{1}}+\ldots+\alpha_{n} \mathbf{v}_{\mathbf{n}}$. But $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are linearly independent, so $\alpha_{i}=0$ for $i=1, \ldots, n$. Hence $\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \mathbf{T}\left(\mathbf{v}_{\mathbf{n}-\mathbf{r}}\right)$ are linearly independent, so they form a basis for $\mathbf{T}(\mathcal{V})$. Thus $\operatorname{dim}(\mathbf{T}(\mathcal{V}))+\operatorname{dim}(\operatorname{kernel} \mathbf{T})=n$.

Question 3(b) Find all real 2×2 matrices \mathbf{A} with real eigenvalues which satisfy $\mathbf{A A}^{\prime}=\mathbf{I}$.
Solution. Since $\mathbf{A A}^{\prime}=\mathbf{I},|\mathbf{A}|= \pm 1$. If $|\mathbf{A}|=1$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

so $a^{2}+b^{2}=1, c^{2}+d^{2}=1, a c+b d=0, a d-b c=1$. Let $a=\cos \theta, b=\sin \theta$. Then

$$
\begin{array}{r}
c \cos \theta+d \sin \theta=0 \\
-c \sin \theta+d \cos \theta=1
\end{array} \Rightarrow \begin{gathered}
c \cos \theta \sin \theta+d \sin ^{2} \theta=0 \\
-c \sin \theta \cos \theta+d \cos ^{2} \theta=\cos \theta
\end{gathered} \Rightarrow d=\cos \theta, c=-\sin \theta
$$

Thus $\mathbf{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right), \theta$ is real.
Now the eigenvalues of \mathbf{A} are given by

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
\cos \theta-\lambda & \sin \theta \\
-\sin \theta & \cos \theta-\lambda
\end{array}\right|=0
$$

So $(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0$, or $\lambda^{2}-2 \lambda \cos \theta+1=0$. Thus

$$
\lambda=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2}=\cos \theta \pm i \sin \theta
$$

Since the eigenvalues of \mathbf{A} are real, $\sin \theta=0$, so $\cos \theta= \pm 1$. Thus

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

If $|\mathbf{A}|=-1, \mathbf{J}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then $|\mathbf{J A}|=1$. Also $\mathbf{J} \mathbf{A}(\mathbf{J A})^{\prime}=\mathbf{J A A}^{\prime} \mathbf{J}^{\prime}=\mathbf{J} \mathbf{J}^{\prime}=\mathbf{I}$. Thus

$$
\mathbf{J} \mathbf{A}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\mathbf{A}=\mathbf{J}^{-1}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
-\sin \theta & \cos \theta \\
\cos \theta & \sin \theta
\end{array}\right)
$$

Now the eigenvalues of \mathbf{A} are given by

$$
0=|\lambda \mathbf{I}-\mathbf{A}|=\left|\begin{array}{cc}
\lambda+\sin \theta & -\cos \theta \\
-\cos \theta & \lambda-\sin \theta
\end{array}\right|=\lambda^{2}-\sin ^{2} \theta-\cos ^{2} \theta=\lambda^{2}-1
$$

Hence $\lambda= \pm 1$, so the eigenvalues are always real. Thus the possible values of \mathbf{A} are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{cc}
-\sin \theta & \cos \theta \\
\cos \theta & \sin \theta
\end{array}\right) \text { for all real } \theta
$$

Question 3(c) Reduce to diagonal matrix by rational congruent transformation the symmetric matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 0 & 3 \\
-1 & 3 & 1
\end{array}\right)
$$

Solution. The corresponding quadratic form is

$$
\begin{aligned}
& x^{2}+z^{2}+4 x y-2 x z+6 y z \\
= & (x+2 y-z)^{2}-4 y^{2}+10 y z \\
= & (x+2 y-z)^{2}-4\left(y-\frac{5}{4} z\right)^{2}+\frac{25}{4} z^{2} \\
= & X^{2}-4 Y^{2}+\frac{25}{4} Z^{2}
\end{aligned}
$$

where $X=x+2 y-z, Y=y-5 z / 4, Z=z$. From this we get $z=Z, y=Y+5 Z / 4, x=$ $X-2 Y-\frac{3}{2} Z$. Thus

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & \frac{25}{4}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-\frac{3}{2} & \frac{5}{4} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 0 & 3 \\
-1 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & -\frac{3}{2} \\
0 & 1 & \frac{5}{4} \\
0 & 0 & 1
\end{array}\right)
$$

