UPSC Civil Services Main 1998 - Mathematics Linear Algebra

Sunder Lal

Retired Professor of Mathematics Panjab University Chandigarh

June 14, 2007

Question 1(a) Given two linearly independent vectors (1, 0, 1, 0) and (0, -1, 1, 0) of \mathbb{R}^4 , find a basis of \mathbb{R}^4 which includes them.

Solution. Let $\mathbf{v_1} = (1, 0, 1, 0), \mathbf{v_2} = (0, -1, 1, 0)$. Clearly these are linearly independent. Let $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}$ be the standard basis. Then $\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}, \mathbf{e_4}$ generate \mathbb{R}^4 . We have to find four vectors out of these which are linearly independent and include $\mathbf{v_1}, \mathbf{v_2}$.

If $\alpha \mathbf{v_1} + \beta \mathbf{v_2} + \gamma \mathbf{e_1} = 0$, then $\alpha + \gamma = 0, -\alpha = 0, \alpha + \beta = 0 \Rightarrow \alpha = \beta = \gamma = 0$. Therefore $\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}$ are linearly independent.

We now show that $\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}, \mathbf{e_4}$ are linearly independent. Let $\alpha \mathbf{v_1} + \beta \mathbf{v_2} + \gamma \mathbf{e_1} + \delta \mathbf{e_4} = 0$ then $\delta = 0$, and therefore $\alpha = \beta = \gamma = 0$ because $\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}$ are linearly independent.

Thus $\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}, \mathbf{e_4}$ is a basis of \mathbb{R}^4 .

Note that $e_2 = v_1 - v_2 - e_1, e_3 = v_1 - e_1$.

Question 1(b) If \mathcal{V} is a finite dimensional vector space over \mathbb{R} and if f and g are two linear transformations from \mathcal{V} to \mathbb{R} such that $f(\mathbf{v}) = 0$ implies $g(\mathbf{v}) = 0$, then prove that $g = \lambda f$ for some $\lambda \in \mathbb{R}$.

Solution. If g = 0, take $\lambda = 0$, so $g(\mathbf{v}) = 0 = 0 f(\mathbf{v})$ for all $\mathbf{v} \in \mathcal{V}$.

If $g \neq 0$, then $f \neq 0$. Thus $\exists \mathbf{v} \in \mathcal{V}$ such that $f(\mathbf{v}) \neq 0 \Rightarrow \exists \mathbf{w} \in \mathcal{V}$ such that $f(\mathbf{w}) = 1$ (Note that $f(\frac{\mathbf{v}}{f(\mathbf{v})}) = 1$).

Thus $\mathcal{V}/\ker f \simeq \mathbb{R}$, or dim(ker f) = n - 1. Similarly ker g has dimension n - 1. In fact, ker $f = \ker g :: \ker f \subseteq \ker g$ and dim(ker f) = dim(ker g). Let $\{\mathbf{v}_2, \ldots, \mathbf{v}_n\}$ be a basis of ker f and extend it to $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ a basis of \mathcal{V} . Then $g = \lambda f$ with $\lambda = g(\mathbf{v}_1)/f(\mathbf{v}_1)$: if $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n$, then $g(\mathbf{v}) = \alpha_1 g(\mathbf{v}_1) = \alpha_1 \lambda f(\mathbf{v}_1) = \lambda f(\mathbf{v})$.

Question 1(c) Let $\mathbf{T} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by $\mathbf{T}(x_1, x_2, x_3) = (x_2, x_3, -cx_1 - bx_2 - ax_3)$ where a, b, c are fixed real numbers. Show that \mathbf{T} is a linear transformation of \mathbb{R}^3 and that $\mathbf{A}^3 + a\mathbf{A}^2 + b\mathbf{A} + c\mathbf{I} = \mathbf{0}$ where \mathbf{A} is the matrix of \mathbf{T} w.r.t. the standard basis of \mathbb{R}^3 .

Solution. Let $\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3)$. Then

$$\begin{aligned} \mathbf{T}(\alpha \mathbf{x} + \beta \mathbf{y}) &= (\alpha x_2 + \beta y_2, \alpha x_3 + \beta x_3, -c(\alpha x_1 + \beta y_1) - b(\alpha x_2 + \beta y_2) - a(\alpha x_3 + \beta y_3)) \\ &= \alpha (x_2, x_3, -cx_1 - bx_2 - ax_3) + \beta (y_2, y_3, -cy_1 - by_2 - ay_3) \\ &= \alpha \mathbf{T}(\mathbf{x}) + \beta \mathbf{T}(\mathbf{y}) \end{aligned}$$

Thus \mathbf{T} is linear.

Clearly

$$\mathbf{T}(1,0,0) = (0,0,-c)$$

$$\mathbf{T}(0,1,0) = (1,0,-b)$$

$$\mathbf{T}(0,0,1) = (0,1,-a)$$

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -c & -b & -a \end{pmatrix}$$

The characteristic equation of **A** is $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

$$\begin{vmatrix} -\lambda & 1 & 0\\ 0 & \lambda & 1\\ -c & -b & -a - \lambda \end{vmatrix} = 0$$
$$-\lambda^{2}(a+\lambda) - b\lambda - c = 0$$
$$\lambda^{3} + a\lambda^{2} + b\lambda + c = 0$$

Now by the Cayley-Hamilton theorem $\mathbf{A}^3 + a\mathbf{A}^2 + b\mathbf{A} + c\mathbf{I} = \mathbf{0}$.

Question 2(a) If A and B are two matrices of order 2×2 such that A is skew-Hermitian and AB = B then show that B = 0.

Solution. We first of all prove that eigenvalues of skew-Hermitian matrices are 0 or pure imaginary. Let **A** be skew-Hermitian, i.e. $\overline{\mathbf{A}}' = -\mathbf{A}$ and let λ be its characteristic root. If **x** is an eigenvector of λ , then

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

$$\Rightarrow \quad \overline{\mathbf{x}}'\lambda\mathbf{x} = \quad \overline{\mathbf{x}}'\mathbf{A}\mathbf{x}$$

$$= \quad -\overline{\mathbf{x}}'\overline{\mathbf{A}}'\mathbf{x}$$

$$= \quad -\overline{\mathbf{A}}\overline{\mathbf{x}}'\mathbf{x}$$

$$= \quad -\overline{\lambda}\overline{\mathbf{x}}'\mathbf{x}$$

Thus $\lambda = -\overline{\lambda}$:: $\overline{\mathbf{x}}'\mathbf{x} \neq 0$, showing that the real part of λ is 0.

Now if $\mathbf{B} \neq \mathbf{0}$ and $\mathbf{c_1}, \mathbf{c_2}$ are the columns of \mathbf{B} , then $\mathbf{c_1} \neq \mathbf{0}$ or $\mathbf{c_2} \neq \mathbf{0}$. $\mathbf{AB} = \mathbf{B}$ means that $\mathbf{Ac_1} = \mathbf{c_1}$ and $\mathbf{Ac_2} = \mathbf{c_2}$. Since either $\mathbf{c_1} \neq \mathbf{0}$ or $\mathbf{c_2} \neq \mathbf{0}$, 1 must be an eigenvalue of \mathbf{A} , which is not possible. Hence $\mathbf{c_1} = \mathbf{0}$ and $\mathbf{c_2} = \mathbf{0}$, which means $\mathbf{B} = \mathbf{0}$.

Question 2(b) If T is a complex matrix of order 2×2 such that $\operatorname{tr} \mathbf{T} = \operatorname{tr} \mathbf{T}^2 = 0$, then show that $\mathbf{T}^2 = \mathbf{0}$.

Solution. Let λ_1, λ_2 be the eigenvalues of **T**, then λ_1^2, λ_2^2 are the eigenvalues of **T**². Given that

$$\operatorname{tr} \mathbf{T} = \lambda_1 + \lambda_2 = 0$$

$$\operatorname{tr} \mathbf{T}^2 = \lambda_1^2 + \lambda_2^2 = 0$$

 $0 = \lambda_1^2 + \lambda_2^2 = \lambda_1^2 + (-\lambda_1)^2 \Rightarrow \lambda_1 = 0$ and from $\lambda_1 + \lambda_2 = 0$ we get $\lambda_1 = \lambda_2 = 0$. The characteristic equation of **T** is $(x - \lambda_1)(x - \lambda_2) = 0$, or $x^2 = 0$. By Cayley-Hamilton theorem, we immediately get $\mathbf{T}^2 = \mathbf{0}$.

Question 2(c) Prove that a necessary and sufficient condition for an $n \times n$ real matrix **A** to be similar to a diagonal matrix is that the set of characteristic vectors of **A** includes a set of n linearly independent vectors.

Solution.

Necessity: By hypothesis there exists a nonsingular matrix **P** such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0\\ 0 & \lambda_2 & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Let $\mathbf{P} = [\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}]$, where each $\mathbf{c_i}$ is an *n*-row column vector.

$$\mathbf{A}[\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}] = [\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}] \mathbf{D} = [\lambda_1 \mathbf{c_1}, \lambda_2 \mathbf{c_2}, \dots, \lambda_n \mathbf{c_n}]$$

so $\mathbf{Ac_i} = \lambda_i \mathbf{c_i}$ for i = 1, ..., n. Thus $\mathbf{c_1}, \mathbf{c_2}, ..., \mathbf{c_n}$ are characteristic vectors of \mathbf{A} corresponding to the eigenvalues $\lambda_1, ..., \lambda_n$. Since \mathbf{P} is nonsingular, $\mathbf{c_1}, \mathbf{c_2}, ..., \mathbf{c_n}$ are linearly independent. Thus the set of characteristic vectors of \mathbf{A} includes a set of n linearly independent vectors.

Sufficiency: Let $\mathbf{c_1}, \mathbf{c_2}, \ldots, \mathbf{c_n}$ be *n* linearly independent eigenvectors of **A** corresponding to eigenvalues $\lambda_1, \ldots, \lambda_n$. Thus $\mathbf{Ac_i} = \lambda_i \mathbf{c_i}$ for $i = 1, \ldots, n$. Let $\mathbf{P} = [\mathbf{c_1}, \mathbf{c_2}, \ldots, \mathbf{c_n}]$, then **P** is nonsingular (otherwise 0 is an eigenvalue of **P**, so $\exists \mathbf{x} = (x_1, \ldots, x_n) \neq \mathbf{0}$ such that $\mathbf{Px} = \mathbf{0} \Rightarrow x_1 \mathbf{c_1} + \ldots + x_n \mathbf{c_n} = \mathbf{0} \Rightarrow \mathbf{c_1}, \mathbf{c_2}, \ldots, \mathbf{c_n}$ are not linearly independent.). Clearly

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0\\ 0 & \lambda_2 & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Question 3(a) Let \mathbf{A} be a $m \times n$ matrix. Show that the sum of the rank and nullity of \mathbf{A} is n.

Solution. The matrix **A** can be regarded as a linear transformation $\mathbf{A} : \mathcal{F}^n \longrightarrow \mathcal{F}^m$ where \mathcal{F} is the field to which the entries of **A** belong, and the bases for $\mathcal{F}^n, \mathcal{F}^m$ are standard bases.

Let $\mathbf{T}: \mathcal{V} \longrightarrow \mathcal{W}$ be a linear transformation, where $\dim(\mathcal{V}) = n, \dim(\mathcal{W}) = m$. We shall show that $\dim(\mathbf{T}(\mathcal{V})) + \dim(\operatorname{kernel} \mathbf{T}) = n$.

Take $\mathbf{v_{n-r+1}}, \ldots, \mathbf{v_n}$ to be any basis of kernel \mathbf{T} , where dim(kernel \mathbf{T}) = r. Complete it to a basis $\mathbf{v_1}, \ldots, \mathbf{v_{n-r+1}}, \ldots, \mathbf{v_n}$ of \mathcal{V} . We shall show that $\mathbf{T}(\mathbf{v_1}), \ldots, \mathbf{T}(\mathbf{v_{n-r}})$ are linearly independent and generate $\mathbf{T}(\mathcal{V})$, thus dim $(\mathbf{T}(\mathcal{V})) = n - r$.

If $\mathbf{w} \in \mathbf{T}(\mathcal{V})$, then $\exists \mathbf{v} \in \mathcal{V}$ such that $\mathbf{T}(\mathbf{v}) = \mathbf{w}$. If $\mathbf{v} = \alpha_1 \mathbf{v_1} + \ldots + \alpha_n \mathbf{v_n}, \alpha_i \in \mathcal{F}$, then $\mathbf{w} = \mathbf{T}(\mathbf{v}) = \alpha_1 \mathbf{T}(\mathbf{v_1}) + \ldots + \alpha_{n-r} \mathbf{T}(\mathbf{v_{n-r}})$ because $\mathbf{T}(\mathbf{v_i}) = \mathbf{0}$ for i > n - r. Thus $\mathbf{T}(\mathcal{V})$ is generated by $\mathbf{T}(\mathbf{v_1}), \ldots, \mathbf{T}(\mathbf{v_{n-r}})$.

If $\alpha_1 \mathbf{T}(\mathbf{v_1}) + \ldots + \alpha_{n-r} \mathbf{T}(\mathbf{v_{n-r}}) = \mathbf{0}$, then $\mathbf{T}(\alpha_1 \mathbf{v_1} + \ldots + \alpha_{n-r} \mathbf{v_{n-r}}) = \mathbf{0}$. This implies $\alpha_1 \mathbf{v_1} + \ldots + \alpha_{n-r} \mathbf{v_{n-r}} \in \text{kernel } \mathbf{T} \Rightarrow \alpha_1 \mathbf{v_1} + \ldots + \alpha_{n-r} \mathbf{v_{n-r}} = \alpha_{n-r+1} \mathbf{v_{n-r+1}} + \ldots + \alpha_n \mathbf{v_n}$. But $\mathbf{v_1}, \ldots, \mathbf{v_n}$ are linearly independent, so $\alpha_i = 0$ for $i = 1, \ldots, n$. Hence $\mathbf{T}(\mathbf{v_1}), \ldots, \mathbf{T}(\mathbf{v_{n-r}})$ are linearly independent, so they form a basis for $\mathbf{T}(\mathcal{V})$. Thus $\dim(\mathbf{T}(\mathcal{V})) + \dim(\text{kernel } \mathbf{T}) = n$.

Question 3(b) Find all real 2×2 matrices A with real eigenvalues which satisfy AA' = I.

Solution. Since AA' = I, $|A| = \pm 1$. If |A| = 1, then

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{cc}a&c\\b&d\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)$$

so $a^2 + b^2 = 1, c^2 + d^2 = 1, ac + bd = 0, ad - bc = 1$. Let $a = \cos \theta, b = \sin \theta$. Then

$$\begin{array}{c} c\cos\theta + d\sin\theta = 0\\ -c\sin\theta + d\cos\theta = 1 \end{array} \Rightarrow \begin{array}{c} c\cos\theta\sin\theta + d\sin^2\theta = 0\\ -c\sin\theta\cos\theta + d\cos^2\theta = \cos\theta \end{array} \Rightarrow d = \cos\theta, c = -\sin\theta \end{array}$$

Thus $\mathbf{A} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$, θ is real.

Now the eigenvalues of \mathbf{A} are given by

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} \cos \theta - \lambda & \sin \theta \\ -\sin \theta & \cos \theta - \lambda \end{vmatrix} = 0$$

So $(\cos \theta - \lambda)^2 + \sin^2 \theta = 0$, or $\lambda^2 - 2\lambda \cos \theta + 1 = 0$. Thus

$$\lambda = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} = \cos\theta \pm i\sin\theta$$

Since the eigenvalues of **A** are real, $\sin \theta = 0$, so $\cos \theta = \pm 1$. Thus

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right)$$

If
$$|\mathbf{A}| = -1$$
, $\mathbf{J} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $|\mathbf{J}\mathbf{A}| = 1$. Also $\mathbf{J}\mathbf{A}(\mathbf{J}\mathbf{A})' = \mathbf{J}\mathbf{A}\mathbf{A}'\mathbf{J}' = \mathbf{J}\mathbf{J}' = \mathbf{I}$. Thus
$$\mathbf{J}\mathbf{A} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$\mathbf{A} = \mathbf{J} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{pmatrix} 0 & 1 \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$\mathbf{A} = \mathbf{J}^{-1} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{pmatrix}$$

Now the eigenvalues of **A** are given by

$$0 = |\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda + \sin \theta & -\cos \theta \\ -\cos \theta & \lambda - \sin \theta \end{vmatrix} = \lambda^2 - \sin^2 \theta - \cos^2 \theta = \lambda^2 - 1$$

Hence $\lambda = \pm 1$, so the eigenvalues are always real. Thus the possible values of **A** are

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{pmatrix} \text{ for all real } \theta$$

Question 3(c) Reduce to diagonal matrix by rational congruent transformation the symmetric matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 1 \end{array}\right)$$

Solution. The corresponding quadratic form is

$$\begin{aligned} x^2 + z^2 + 4xy - 2xz + 6yz \\ &= (x + 2y - z)^2 - 4y^2 + 10yz \\ &= (x + 2y - z)^2 - 4(y - \frac{5}{4}z)^2 + \frac{25}{4}z^2 \\ &= X^2 - 4Y^2 + \frac{25}{4}Z^2 \end{aligned}$$

where X = x + 2y - z, Y = y - 5z/4, Z = z. From this we get $z = Z, y = Y + 5Z/4, x = X - 2Y - \frac{3}{2}Z$. Thus

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & \frac{25}{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{3}{2} & \frac{5}{4} & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & -\frac{3}{2} \\ 0 & 1 & \frac{5}{4} \\ 0 & 0 & 1 \end{pmatrix}$$