UPSC Civil Services Main 1999 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question $\mathbf{1}(\mathbf{a})$ Let \mathcal{V} be the vector space of functions from \mathbb{R} to \mathbb{R}. Show that $f, g, h \in \mathcal{V}$ are linearly independent where $f(t)=e^{2 t}, g(t)=t^{2}$ and $h(t)=t$.

Solution. Let $a, b, c \in \mathbb{R}$ and let $a e^{2 t}+b t^{2}+c t=0$ for all t. Setting $t=0$ shows that $a=0$. From $t=1$ we get $b+c=0$, and $t=-1$ gives $b-c=0$, hence $b=c=0$. Thus f, g, h are linearly independent.

Question $\mathbf{1}(\mathbf{b})$ If the matrix of the linear transformation \mathbf{T} on $\mathcal{V}_{2}(\mathbb{R})$ with respect to the basis $B=\{(1,0),(0,1)\}$ is $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then what is the matrix of \mathbf{T} with respect to the ordered basis $B_{1}=\{(1,1),(1,-1)\}$.

Solution. $\mathbf{T}\left(\mathbf{e}_{\mathbf{1}}\right)=\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}, \mathbf{T}\left(\mathbf{e}_{\mathbf{2}}\right)=\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}$. Let $\mathbf{v}_{\mathbf{1}}=(1,1)=\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}=(1,-1)=\mathbf{e}_{\mathbf{1}}-$ $\mathbf{e}_{\mathbf{2}}$. Then $\mathbf{T}\left(\mathbf{v}_{\mathbf{1}}\right)=\mathbf{T}((1,1))=(2,2)=2 \mathbf{e}_{\mathbf{1}}+2 \mathbf{e}_{\mathbf{2}}=2 \mathbf{v}_{\mathbf{1}} . \mathbf{T}\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{T}((1,-1))=(0,0)=\mathbf{0}$. Thus the matrix of \mathbf{T} with respect to the ordered basis $B_{1}=\{(1,1),(1,-1)\}$ is $\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$.

Question 1(c) Diagonalize the matrix $\mathbf{A}=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$.

Solution. The characteristic equation is

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
4-x & 2 & 2 \\
2 & 4-x & 2 \\
2 & 2 & 4-x
\end{array}\right| \\
& =(4-x)\left((4-x)^{2}-4\right)+2(4-8+2 x)-2(8-2 x-4) \\
& =(4-x)\left(12-8 x+x^{2}\right)-8+4 x-8+4 x \\
& =48-32 x+4 x^{2}-12 x+8 x^{2}-x^{3}-16+8 x \\
& =-\left(x^{3}-12 x^{2}+36 x-32\right) \\
& =-(x-2)\left(x^{2}-10 x+16\right) \quad \because 2 \text { is a root } \\
& =-(x-2)(x-2)(x-8)
\end{aligned}
$$

The characteristic roots are $2,2,8$.
If $\left(x_{1}, x_{2}, x_{3}\right)$ is an eigenvector for $\lambda=8$, then

$$
\left(\begin{array}{ccc}
-4 & 2 & 2 \\
2 & -4 & 2 \\
2 & 2 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Thus $x_{1}=x_{2}=x_{3}$, so $(1,1,1)$ is an eigenvector for $\lambda=8$.
Similarly for $\lambda=2$,

$$
\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Thus $x_{1}+x_{2}+x_{3}=0$. Take $x_{1}=1, x_{2}=0$, so $(1,0,-1)$ is an eigenvector. Take $x_{1}=0, x_{2}=$ 1 , so $(0,1,-1)$ is an eigenvector for $\lambda=2$. These eigenvectors are linearly independent.
Thus if $\mathbf{P}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1\end{array}\right)$, then $\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{lll}8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
To check, verify that $\mathbf{A P}=\mathbf{P}\left(\begin{array}{ccc}8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
Question 2(a) Test for congruency the matrices $\mathbf{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$. Prove that $\mathbf{A}^{2 n}=\mathbf{B}^{2 m}=\mathbf{I}$ where m, n are positive integers.

Solution. \mathbf{A} and \mathbf{B} are not congruent, because \mathbf{A} is symmetric and \mathbf{B} is not. If $\mathbf{A} \equiv \mathbf{B}$ then $\exists \mathbf{P}$ non-singular such that $\mathbf{P}^{\prime} \mathbf{A P}=\mathbf{B}$ which implies that \mathbf{B} should be symmetric.

$$
\begin{aligned}
\mathbf{A}^{2} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\mathbf{B}^{2} & =\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Hence $\mathbf{A}^{2 n}=\left(\mathbf{A}^{2}\right)^{n}=\mathbf{I}$, and $\mathbf{B}^{2 m}=\left(\mathbf{B}^{2}\right)^{m}=\mathbf{I}$.
Question 2(b) If \mathbf{A} is a skew symmetric matrix of order n then prove that $(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1}$ is orthogonal.

Solution.

$$
\begin{aligned}
\mathbf{O} & =(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1} \\
\mathbf{O O}^{\prime} & =(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1}\left((\mathbf{I}+\mathbf{A})^{-1}\right)^{\prime}(\mathbf{I}-\mathbf{A})^{\prime} \\
& =(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}-\mathbf{A})^{-1}(\mathbf{I}+\mathbf{A}) \quad \text { as } \mathbf{A}^{\prime}=-\mathbf{A} \\
& =(\mathbf{I}-\mathbf{A})[(\mathbf{I}-\mathbf{A})(\mathbf{I}+\mathbf{A})]^{-1}(\mathbf{I}+\mathbf{A}) \\
& \left.=(\mathbf{I}-\mathbf{A})\left[\mathbf{I}-\mathbf{A}^{2}\right)\right]^{-1}(\mathbf{I}+\mathbf{A}) \\
& =(\mathbf{I}-\mathbf{A})[(\mathbf{I}+\mathbf{A})(\mathbf{I}-\mathbf{A})]^{-1}(\mathbf{I}+\mathbf{A}) \\
& =(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{A})^{-1}(\mathbf{I}+\mathbf{A})^{-1}(\mathbf{I}+\mathbf{A}) \\
& =\mathbf{I}
\end{aligned}
$$

Similarly it can be shown that $\mathbf{O}^{\prime} \mathbf{O}=\mathbf{I}$. Hence \mathbf{O} is orthogonal.
Question 2(c) Test for positive definiteness the quadratic form $2 x^{2}+y^{2}+2 z^{2}+2 x y-2 z x$.
Solution. The given form is

$$
\begin{aligned}
& \frac{1}{2}\left(4 x^{2}+3 y^{2}+4 z^{2}+4 x y-4 z x\right) \\
& =\frac{1}{2}\left((2 x+y-z)^{2}+y^{2}+3 z^{2}+2 y z\right) \\
& =\frac{1}{2}\left((2 x+y-z)^{2}+(y+z)^{2}+2 z^{2}\right)
\end{aligned}
$$

Now $2 x+y-z=0, y+z=0, z=0$ implies $x=y=z=0$. Hence the form is positive definite.

Question 2(d) Reduce the equation

$$
x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x+x-y-2 z+6=0
$$

into canonical form and determine the nature of the quadric.
Solution. Consider $x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x$. Its matrix is

$$
\mathbf{S}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

Its characteristic equation is

$$
\left|\begin{array}{ccc}
1-\lambda & -1 & 1 \\
-1 & 1-\lambda & -1 \\
1 & -1 & 1-\lambda
\end{array}\right|=0
$$

or $\lambda^{3}-3 \lambda^{2}=0$. Thus $\lambda=0,0,3$.
We next determine the characteristic vectors. For $\lambda=0$, we get

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Thus $x_{1}-x_{2}+x_{3}=0$. Take $(1,1,0)$ and $(-1,1,2)$ as orthogonal characteristic vectors corresponding to $\lambda=0$.

For $\lambda=3$, we get

$$
\left(\begin{array}{ccc}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This yields $x_{1}=-x_{2}=x_{3}$. Take $(1,-1,1)$ as the characteristic vector for $\lambda=3$.
Thus if

$$
\mathbf{O}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right)
$$

Then $\mathbf{O}^{\prime} \mathbf{S O}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
Let

$$
\mathbf{O}\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

or

$$
\begin{aligned}
x & =\frac{X}{\sqrt{3}}+\frac{Y}{\sqrt{2}}-\frac{Z}{\sqrt{6}} \\
y & =-\frac{X}{\sqrt{3}}+\frac{Y}{\sqrt{2}}+\frac{Z}{\sqrt{6}} \\
z & =\frac{X}{\sqrt{3}}+\frac{2 Z}{\sqrt{6}}
\end{aligned}
$$

Thus the given equation can be transformed to

$$
\begin{gathered}
3 X^{2}+\frac{X}{\sqrt{3}}+\frac{Y}{\sqrt{2}}-\frac{Z}{\sqrt{6}}+\frac{X}{\sqrt{3}}-\frac{Y}{\sqrt{2}}-\frac{Z}{\sqrt{6}}-\frac{2 X}{\sqrt{3}}-\frac{4 Z}{\sqrt{6}}+6=0 \\
\Rightarrow 3 X^{2}-Z \sqrt{6}+6=0 \\
\Rightarrow \sqrt{\frac{3}{2}} X^{2}=Z-\sqrt{6}
\end{gathered}
$$

Shifting the origin to $(0,0, \sqrt{6})$, we get $X^{2}=\sqrt{\frac{2}{3}} Z$, showing that the equation is a parabolic cylinder.

1 Reduction of Quadrics

For the sake of completeness, we give the complete theoretical discussion for the above question.

Let

$$
F(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y+2 u x+2 v y+2 w z+d=0
$$

It can be expressed in matrix form as

$$
\left(\begin{array}{llll}
x & y & z & 1
\end{array}\right)\left(\begin{array}{llll}
a & h & g & u \\
h & b & f & v \\
g & f & c & w \\
u & v & w & d
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=0
$$

Let the 4×4 matrix be \mathbf{Q}.
Step I. Consider

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
x & y & z
\end{array}\right) \mathbf{S}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

1. Find the characteristic roots of $\mathbf{S}-\lambda_{1}, \lambda_{2}, \lambda_{3}$.
2. Find characteristic vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}}$ corresponding to $\lambda_{1}, \lambda_{2}, \lambda_{3}$ which are orthogonal. These on normalization give us

$$
\mathbf{O}=\left(\begin{array}{ccc}
\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} & \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|} & \frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}
\end{array}\right)
$$

Thus we get $\mathbf{O}^{\prime} \mathbf{S O}=\operatorname{diagonal}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$. Let

$$
\mathbf{O}\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

This gives us three equations expressing x, y, z in term of X, Y, Z. Substituting in F, we get

$$
F(X, Y, Z)=\lambda_{1} X^{2}+\lambda_{2} Y^{2}+\lambda_{3} Z^{2}+2 U X+2 V Y+2 W Z+d=0
$$

(Note that d is unaffected.)
Note 1 Since \mathbf{O} is orthogonal, the transformation $\mathbf{O}\left(\begin{array}{c}X \\ Y \\ Z\end{array}\right)=\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$ is just a rotation of the axes, and therefore the nature of the quadric is unaffected.

Step II. We now consider 3 possibilities (ρ is rank of the matrix):

1. $\rho(\mathbf{S})=3 \Rightarrow \lambda_{1} \lambda_{2} \lambda_{3} \neq 0$. Shift the origin to $\left(-\frac{U}{\lambda_{1}},-\frac{V}{\lambda_{2}},-\frac{W}{\lambda_{3}}\right)$, i.e. $x=X+\frac{U}{\lambda_{1}}, y=$ $Y+\frac{V}{\lambda_{2}}, z=Z+\frac{W}{\lambda_{3}}$. (Actually we are just completing the squares.) F gets transformed to

$$
\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}+d_{2}=0
$$

2. $\rho(\mathbf{S})=2$. One characteristic root, say $\lambda_{3}=0$. Shift the origin to $\left(-\frac{U}{\lambda_{1}},-\frac{V}{\lambda_{2}}, 0\right)$, and F gets transformed to

$$
\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 w_{2} z+d_{2}=0
$$

3. $\rho(\mathbf{S})=1$. Two characteristic roots, say $\lambda_{2}=\lambda_{3}=0$. Shift the origin to $\left(-\frac{U}{\lambda_{1}}, 0,0\right)$, and F gets transformed to

$$
\lambda_{1} x^{2}+2 v_{2} y+2 w_{2} z+d_{2}=0
$$

Note that $\rho(\mathbf{S})=0 \Rightarrow \lambda_{1}=\lambda_{2}=\lambda_{3}=0$. Then $F(x, y, z)$ is no longer a quadric, it is a plane.

Step III. Observe that $\rho(\mathbf{S}) \leq \rho(\mathbf{Q}) \leq 4, \rho(\mathbf{S}) \leq 3$.

1. Let $\rho(\mathbf{Q})=4, \rho(\mathbf{S})=3$. As shown above, $F(x, y, z)=0$ is transformed to

$$
\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}+d_{2}=0
$$

$|\mathbf{Q}|=\lambda_{1} \lambda_{2} \lambda_{3} d_{2} \Rightarrow d_{2}=\frac{|\mathbf{Q}|}{|\mathbf{S}|}$. Thus the quadric is $\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}=-\frac{|\mathbf{Q}|}{|\mathbf{S}|}$, which is a central quadric i.e. a quadric surface with a center, e.g., a sphere, ellipsoid, or hyperboloid, depending upon the signs and magnitudes of the eigenvalues. If the right hand side has positive sign (maybe by multiplying the equation with -1), then look at the signs of the coefficients of the l.h.s. If all are positive, it is an ellipsoid, further if all are equal, it is a sphere. If 1 or 2 are negative, it is a hyperboloid. If all 3 are negative, the surface is the empty set.
2. $\rho(\mathbf{Q})=3, \rho(\mathbf{S})=3$. $|\mathbf{Q}|=\lambda_{1} \lambda_{2} \lambda_{3} d_{2}=0 \Rightarrow d_{2}=0$, because $\lambda_{1} \lambda_{2} \lambda_{3} \neq 0$. Thus the quadric becomes $\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}=0$, which is a cone.
3. $\rho(\mathbf{Q})=4, \rho(\mathbf{S})=2$

$$
\begin{aligned}
F(x, y, z) & =\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 w_{2} z+d_{2}=0 \\
\mathbf{Q} & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & w_{2} \\
0 & 0 & w_{2} & d_{2}
\end{array}\right)
\end{aligned}
$$

$|\mathbf{Q}|=-\lambda_{1} \lambda_{2} w_{2}^{2}$. Since $\rho(\mathbf{Q})=4, w_{2} \neq 0$. Shifting the origin to $\left(0,0,-\frac{d_{2}}{2 w_{2}}\right)$ we get

$$
F(x, y, z)=\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 w_{2} z=0
$$

where $w_{2}^{2}=-|\mathbf{Q}| / \lambda_{1} \lambda_{2}$. The surface is a paraboloid.
4. $\rho(\mathbf{Q})=3, \rho(\mathbf{S})=2$

$$
F(x, y, z)=\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 w_{2} z+d_{2}=0
$$

$\rho(\mathbf{Q})=3 \Rightarrow|\mathbf{Q}|=-\lambda_{1} \lambda_{2} w_{2}^{2} \Rightarrow w_{2}=0$. Since

$$
\mathbf{Q}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{2}
\end{array}\right)
$$

and $\rho(\mathbf{Q})=3, d_{2} \neq 0$. Thus

$$
F(x, y, z)=\lambda_{1} x^{2}+\lambda_{2} y^{2}+d_{2}=0
$$

The quadric is a hyperbolic or elliptic cylinder.
5. $\rho(\mathbf{Q})=2, \rho(\mathbf{S})=2$

$$
\mathbf{Q}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{2}
\end{array}\right)
$$

$\rho(\mathbf{Q})=2 \Rightarrow d_{2}=0$, and $F(x, y, z)=\lambda_{1} x^{2}+\lambda_{2} y^{2}=0$. The quadric is a pair of distinct planes or a point, if $\lambda_{1}=\lambda_{2} \neq 0$.
6. $\rho(\mathbf{Q})=4, \rho(\mathbf{S})=1$

$$
\begin{aligned}
F(x, y, z) & =\lambda_{1} x^{2}+2 v_{2} y+2 w_{2} z+d_{2}=0 \\
\mathbf{Q} & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & v_{2} \\
0 & 0 & 0 & w_{2} \\
0 & v_{2} & w_{2} & d_{2}
\end{array}\right)
\end{aligned}
$$

which shows that $\rho(\mathbf{Q})=4$ is not possible.
7. $\rho(\mathbf{Q})=3, \rho(\mathbf{S})=1$

$$
F(x, y, z)=\lambda_{1} x^{2}+2 v_{2} y+2 w_{2} z+d_{2}=0
$$

$\rho(\mathbf{Q})=3 \Rightarrow$ both v_{2} and w_{2} cannot be 0 . Suppose $v_{2} \neq 0$. Shift the origin to $\left(0,-\frac{d_{2}}{2 v_{2}}, 0\right)$.

$$
F(x, y, z)=\lambda_{1} x^{2}+2 v_{2} y+2 w_{2} z=0
$$

Rotate the axes by

$$
\begin{aligned}
x & =X \\
y & =\frac{v_{2}}{\sqrt{v_{2}^{2}+w_{2}^{2}}} Y-\frac{w_{2}}{\sqrt{v_{2}^{2}+w_{2}^{2}}} Z \\
z & =\frac{w_{2}}{\sqrt{v_{2}^{2}+w_{2}^{2}}} Y+\frac{v_{2}}{\sqrt{v_{2}^{2}+w_{2}^{2}}} Z \\
F(x, y, z) & =\lambda_{1} X^{2}+2 v_{3} Y=0 \quad v_{3}=\sqrt{v_{2}^{2}+w_{2}^{2}}
\end{aligned}
$$

Thus the quadric is a parabolic cylinder.
8. $\rho(\mathbf{Q})=2, \rho(\mathbf{S})=1 \rho(\mathbf{Q})=2 \Rightarrow v_{2}=w_{2}=0, d_{2} \neq 0$.

$$
F(x, y, z)=\lambda_{1} X^{2}+d_{2}=0
$$

The quadric is two parallel planes.
9. $\rho(\mathbf{Q})=1, \rho(\mathbf{S})=1$ The quadric immediately reduces to $F(x, y, z)=\lambda_{1} X^{2}=0$, so it represents two coincident planes $x=0$.

$\rho(\mathbf{Q})$	$\rho(\mathbf{S})$	Surface	Canonical form
4	3	central quadric	$\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}=-\frac{\mathbf{Q} \mid}{\|\mathbf{S}\|}$
3	3	cone	$\lambda_{1} x^{2}+\lambda_{2} y^{2}+\lambda_{3} z^{2}=0$
4	2	paraboloid	$\lambda_{1} x^{2}+\lambda_{2} y^{2}+2 w_{2} z=0, w_{2}^{2}=-\frac{\|\mathbf{Q}\|}{\lambda_{1} \lambda_{2}}$
3	2	elliptic or hyperbolic cylinder	$\lambda_{1} x^{2}+\lambda_{2} y^{2}+d_{2}=0$
2	2	pair of distinct planes if $\lambda_{1} \lambda_{2}<0$	
point if $\lambda_{1} \lambda_{2}>0$	$\lambda_{1} x^{2}+\lambda_{2} y^{2}=0$		
4	1	Not possible	
3	1	parabolic cylinder	$\lambda_{1} X^{2}+2 v_{3} Y=0, v_{3}=\sqrt{v_{2}^{2}+w_{2}^{2}}$
2	1	pair of parallel planes	$\lambda_{1} X^{2}+d_{2}=0$
1	1	Two coincident planes	$\lambda_{1} X^{2}=0$

