UPSC Civil Services Main 2000 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question 1(a) Let \mathcal{V} be a vector space over \mathbb{R} and let

$$
\mathcal{T}=\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in \mathcal{V}\}
$$

Define $(\mathbf{x}, \mathbf{y})+\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}\right)=\left(\mathbf{x}+\mathbf{x}_{\mathbf{1}}, \mathbf{y}+\mathbf{y}_{\mathbf{1}}\right)$ in \mathcal{T} and $(\alpha+i \beta)(\mathbf{x}, \mathbf{y})=(\alpha \mathbf{x}-\beta \mathbf{y}, \beta \mathbf{x}+\alpha \mathbf{y})$ for every $\alpha, \beta \in \mathbb{R}$. Show that \mathcal{T} is a vector space over \mathbb{C}.

Solution.

1. $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in \mathcal{T} \Rightarrow \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}} \in \mathcal{T}$
2. $(\mathbf{0}, \mathbf{0})$ is the additive identity where $\mathbf{0}$ is the zero vector in \mathcal{V}.
3. If $(\mathbf{x}, \mathbf{y}) \in \mathcal{T}$, then $(-\mathbf{x},-\mathbf{y}) \in \mathcal{T}$, and $(\mathbf{x}, \mathbf{y})+(-\mathbf{x},-\mathbf{y})=(\mathbf{0}, \mathbf{0})$
4. Clearly $\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{1}}$ and $\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)+\mathbf{v}_{\mathbf{3}}=\mathbf{v}_{\mathbf{1}}+\left(\mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}\right)$ as addition is commutative and associative in \mathcal{V}.
5. $z \in \mathbb{C}, \mathbf{v} \in \mathcal{T} \Rightarrow z \mathbf{v} \in \mathcal{T}$
6. $1 \mathbf{v}=(1+i 0)(\mathbf{x}, \mathbf{y})=(\mathbf{x}, \mathbf{y})$
7.

$$
\begin{aligned}
& (\alpha+i \beta)\left(\left(\mathbf{x}_{1}, \mathbf{y}_{\mathbf{1}}\right)+\left(\mathbf{x}_{\mathbf{2}}, \mathbf{y}_{\mathbf{2}}\right)\right) \\
= & \left(\alpha\left(\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}\right)-\beta\left(\mathbf{y}_{\mathbf{1}}+\mathbf{y}_{\mathbf{2}}\right), \beta\left(\mathbf{x}_{\mathbf{1}}+\mathbf{x}_{\mathbf{2}}\right)+\alpha\left(\mathbf{y}_{\mathbf{1}}+\mathbf{y}_{\mathbf{2}}\right)\right) \\
= & \left(\alpha \mathbf{x}_{\mathbf{1}}-\beta \mathbf{y}_{\mathbf{1}}, \beta \mathbf{x}_{\mathbf{1}}+\alpha \mathbf{y}_{\mathbf{1}}\right)+\left(\alpha \mathbf{x}_{\mathbf{2}}-\beta \mathbf{y}_{\mathbf{2}}, \beta \mathbf{x}_{\mathbf{2}}+\alpha \mathbf{y}_{\mathbf{2}}\right) \\
= & (\alpha+i \beta)\left(\mathbf{x}_{1}, \mathbf{y}_{\mathbf{1}}\right)+(\alpha+i \beta)\left(\mathbf{x}_{\mathbf{2}}, \mathbf{y}_{\mathbf{2}}\right)
\end{aligned}
$$

8.

$$
\begin{aligned}
& ((\alpha+i \beta)(\gamma+i \delta))(\mathbf{x}, \mathbf{y}) \\
= & (\alpha \gamma-\beta \delta+i(\alpha \delta+\beta \gamma))(\mathbf{x}, \mathbf{y}) \\
= & ((\alpha \gamma-\beta \delta) \mathbf{x}-(\alpha \delta+\beta \gamma) \mathbf{y},(\alpha \gamma-\beta \delta) \mathbf{y}+(\alpha \delta+\beta \gamma) \mathbf{x}) \\
= & (\alpha(\gamma \mathbf{x}-\delta \mathbf{y})-\beta(\delta \mathbf{x}+\gamma \mathbf{y}), \beta(\gamma \mathbf{x}-\delta \mathbf{y})+\alpha(\delta \mathbf{x}+\gamma \mathbf{y})) \\
= & (\alpha+i \beta)((\gamma \mathbf{x}-\delta \mathbf{y}),(\delta \mathbf{x}+\gamma \mathbf{y})) \\
= & (\alpha+i \beta)((\gamma+i \delta)(\mathbf{x}, \mathbf{y}))
\end{aligned}
$$

Thus \mathcal{T} is a vector space over \mathbb{C}.
Question 1(b) Show that if λ is a characteristic root of a non-singular matrix \mathbf{A}, then λ^{-1} is a characteristic root of \mathbf{A}^{-1}.

Solution.

$$
\begin{array}{rlrl}
\mathbf{A v} & =\lambda \mathbf{v} \quad \mathbf{v} \neq \mathbf{0} \\
\Rightarrow & \mathbf{A}^{-1} \mathbf{A} \mathbf{v} & =\lambda \mathbf{A}^{-1} \mathbf{v} \\
\Rightarrow \quad & \mathbf{A}^{-1} \mathbf{v} & =\lambda^{-1} \mathbf{v}
\end{array}
$$

Thus λ^{-1} is a characteristic root of \mathbf{A}^{-1}.
Question 2(a) Prove that a real symmetric matrix \mathbf{A} is positive definite if and only if $\mathbf{A}=\mathbf{B B}^{\prime}$ for some non-singular \mathbf{B}. Show also that $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11\end{array}\right)$ is positive definite and find \mathbf{B} such that $\mathbf{A}=\mathbf{B B}^{\prime}$. (Here \mathbf{B}^{\prime} is the transpose of \mathbf{B}.)

Solution. If $\mathbf{A}=\mathbf{B B}^{\prime}$ for some non-singular \mathbf{B}, then $\mathbf{x}^{\prime} \mathbf{A x}=\mathbf{x}^{\prime} \mathbf{B B}^{\prime} \mathbf{x}$ where $\mathbf{x} \neq \mathbf{0}$ is a column vector. Since $|\mathbf{B}| \neq 0, \mathbf{B}^{\prime} \mathbf{x} \neq \mathbf{0} \Longrightarrow \mathbf{x}^{\prime} \mathbf{B} \cdot\left(\mathbf{B}^{\prime} \mathbf{x}\right)$ is the sum on n squares, at least one of which is non-zero. Thus $\mathbf{x}^{\prime} \mathbf{A x}>0$ whenever $\mathbf{x} \neq \mathbf{0}$, showing that \mathbf{A} is positive definite.

Conversely, if \mathbf{A} is positive definite, then $\exists \mathbf{P}$ non-singular such that $\mathbf{P}^{\prime} \mathbf{A P}=\mathbf{I}_{\mathbf{n}}$. Thus $\mathbf{A}=\mathbf{P}^{\prime-1} \mathbf{P}^{-1}$. Letting $\mathbf{B}=\mathbf{P}^{\prime-1}$ we get $\mathbf{A}=\mathbf{B B}^{\prime}$ as required.

The existence of \mathbf{P} can be found by induction on n. Let

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \ldots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Define

$$
\mathbf{Q}=\left(\begin{array}{cccc}
1 & -\frac{a_{12}}{a_{11}} & \ldots & -\frac{a_{1 n}}{a_{11}} \\
0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

Then \mathbf{Q} is non-singular, and $\mathbf{Q}^{\prime} \mathbf{A} \mathbf{Q}=\left(\begin{array}{cc}a_{11} & 0 \\ 0 & \mathbf{S}\end{array}\right)$, where \mathbf{S} is $(n-1) \times(n-1)$ positive definite. Let \mathbf{Q}^{*} be a $(n-1) \times(n-1)$ non-singular matrix such that $\mathbf{Q}^{* \prime} \mathbf{S Q}^{*}$ is diagonal, by induction. Then let $\mathbf{Q}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \mathbf{Q}^{*}\end{array}\right)$, and let $\mathbf{P}=\mathbf{Q}_{\mathbf{1}} \mathbf{Q}$. Then $\mathbf{P}^{\prime} \mathbf{A P}$ is diagonal $\left(b_{11}, b_{22}, \ldots, b_{n n}\right)$. Let $\mathbf{B}=\operatorname{diagonal}\left(\frac{1}{\sqrt{b_{11}}}, \ldots, \frac{1}{\sqrt{b_{n n}}}\right)$. Then $\mathbf{B}^{\prime} \mathbf{P}^{\prime} \mathbf{A P B}=\mathbf{I}_{\mathbf{n}}$.

The quadratic form $Q(x, y, z)$ associated with the given matrix \mathbf{A} is given by

$$
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 7 \\
3 & 7 & 11
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x^{2}+5 y^{2}+11 z^{2}+4 x y+6 x z+14 y z
$$

Completing the squares we get $Q(x, y, z)=(x+2 y+3 z)^{2}+(y+z)^{2}+z^{2}$, so \mathbf{A} is positive definite, as $z=0, y+z=0, x+2 y+3 z=0 \Longrightarrow x=y=z=0$.

If \mathbf{B} is a 3×3 matrix such that

$$
\mathbf{B}^{\prime}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+2 y+3 z \\
y+z \\
z
\end{array}\right)
$$

then $\mathbf{x}^{\prime} \mathbf{B B}^{\prime} \mathbf{x}=Q=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$, so $\mathbf{A}=\mathbf{B B}^{\prime}$ as \mathbf{A} and $\mathbf{B B}^{\prime}$ are both symmetric. Clearly

$$
\mathbf{B}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 1 & 1
\end{array}\right)
$$

and it can easily be verified that $\mathbf{A}=\mathbf{B B}^{\prime}$.
Question 2(b) Prove that a system $\mathbf{A x}=\mathbf{B}$ of non-homogeneous equations in n unknowns has a unique solution provided the coefficient matrix is non-singular.

Solution. If \mathbf{A} is non-singular, then the system is consistent because the rank of the coefficient matrix $\mathbf{A}=n=$ rank of the $n \times n+1$ augmented matrix (\mathbf{A}, \mathbf{B}). If $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}$ are two solutions, then

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}_{1}=\mathbf{B}=\mathbf{A} \mathbf{x}_{2} \\
\Longrightarrow & \mathbf{A}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=\mathbf{0} \\
\Longrightarrow & \mathrm{A}^{-1} \mathbf{A}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=\mathbf{0} \\
\Longrightarrow & \mathrm{x}_{1}=\mathrm{x}_{2}
\end{aligned}
$$

Thus the unique solution is given by the column vector $\mathbf{x}=\mathbf{A}^{-1} \mathbf{B}$.

Question 2(c) Prove that two similar matrices have the same characteristic roots. Is the converse true? Justify your claim.

Solution. Let $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$ then characteristic polynomial of \mathbf{B} is $|\lambda \mathbf{I}-\mathbf{B}|=\mid \lambda \mathbf{I}-$ $\mathbf{P}^{-1} \mathbf{A P}\left|=\left|\mathbf{P}^{-1} \lambda \mathbf{I} \mathbf{P}-\mathbf{P}^{-1} \mathbf{A P}\right|=\left|\mathbf{P}^{-1}\right|\right| \lambda \mathbf{I}-\mathbf{A}| | \mathbf{P}|=|\lambda \mathbf{I}-\mathbf{A}|$. (Note that $| \mathbf{X} \| \mathbf{Y}|=|\mathbf{X Y}|$.) Thus the characteristic polynomial of \mathbf{B} is the same as that of \mathbf{A}, so both \mathbf{A} and \mathbf{B} have the same characteristic roots.

The converse is not true. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then \mathbf{A} and \mathbf{B} have the same characteristic polynomial $(\lambda-1)^{2}$ and thus the same characteristic roots. But \mathbf{B} can never be similar to \mathbf{A} because $\mathbf{P}^{-1} \mathbf{B P}=\mathbf{B}$ whatever \mathbf{P} may be.

