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Question 1(a) Show that the vectors (1, 0,−1), (0,−3, 2) and (1, 2, 1) form a basis of the
vector space R3(R).

Solution. Since dimR(R3) = 3, it is enough to prove that these are linearly independent.
If possible, let

a(1, 0,−1) + b(0,−3, 2) + c(1, 2, 1) = 0

This implies
a+ c = 0,−3b+ 2c = 0,−a+ 2b+ c = 0

Solving for c, c + 4
3
c + c = 0, so c = 0, hence a = b = 0. (Note that if these linearly

independent vectors were not a basis, they could be completed into one, but in R3 any four
vectors are linearly dependent, so this is a maximal linearly independent set, hence it is a
basis.

Alternate Solution. Since dim(R3) = 3, to show that (1, 0,−1), (0,−3, 2) and (1, 2, 1)
form a basis it is enough to show that these vectors generate R3. In fact, given (x1, x2, x3),
we can always find a, b, c s.t. (x1, x2, x3) = a(1, 0,−1) + b(0,−3, 2) + c(1, 2, 1) as follows:
a + c = x1,−3b + 2c = x2,−a + 2b + c = x3. Thus (c − x1) + 2(2c − x2)/3 + c = x3,
so c + 4

3
c + c = x1 + 2

3
x2 + x3. Thus c = 3x1+2x2+3x3

10
, a = x1 − c = 7x1−2x2−3x3

10
, and

b = 2c−x2

3
= x1−x2+x3

5
.

Question 1(b) If λ is a characteristic root of a non-singular matrix A, then prove that |A|
λ

is a characteristic root of Adj A.

Solution. If µ is a characteristic root of A, then aµ is a characteristic root of aA for a
constant a, because if Av = µv, v 6= 0 a vector, then aAv = aµv. Hence the result.

If λ is the characteristic root of A, |A| 6= 0, then λ 6= 0, and λ−1 is a characteristic root
of A−1, because Av = λv =⇒ A−1v = λ−1v.

Since Adj A = A−1|A|, it follows that |A|
λ

is a characteristic root of Adj A.
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Question 2(a) If A =

 1 0 0
1 0 1
0 1 0

 show that for all integers n ≥ 3,An = An−2 + A2− I.

Hence determine A50.

Solution. Characteristic equation of A is∣∣∣∣∣∣
λ− 1 0 0

1 λ 1
0 1 λ

∣∣∣∣∣∣ = 0

or (λ−1)(λ2−1) = λ3−λ2−λ+1 = 0. From the Cayley-Hamilton theorem, A3−A2−A+I =
0 ⇒ A3 = A + A2 − I. Thus the result is true for n = 3. Suppose the theorem is true for
n = m i.e. Am = Am−2 + A2 − I. We shall prove it for m+ 1.

Am+1 = AmA

= (Am−2 + A2 − I)A

= Am−1 + A3 −A

= Am−1 + A2 + A−A− I

= Am−1 + A2 − I

The result follows by induction.
Let n = 2m. Using successively An = An−2 + A2 − I, we get A2m = mA2 − (m − 1)I.

Now

A2 =

 1 0 0
1 0 1
0 1 0

 1 0 0
1 0 1
0 1 0

 =

 1 0 0
1 1 0
1 0 1


so

A50 = 25A2 − 24I

=

 25 0 0
25 25 0
25 0 25

−
 24 0 0

0 24 0
0 0 24


=

 1 0 0
25 1 0
25 0 1



Question 2(b) When is a square matrix A said to be congruent to a square matrix B?
Prove that every matrix congruent to a skew-symmetric matrix is skew-symmetric.

Solution. A ≡ B if ∃P nonsingular, s.t. P′AP = B. If S′ = −S then (P′SP)′ = P′S′P =
−(P′SP), so P′SP is also skew-symmetric.
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Question 2(c) Determine the orthogonal matrix P such that P−1AP is diagonal where

A =

 7 4 −4
4 −8 −1
−4 −1 −8

.

Solution. The characteristic equation is ∣∣∣∣∣∣
λ− 7 −4 4
−4 λ+ 8 1
4 1 λ+ 8

∣∣∣∣∣∣ = 0

(λ− 7)((λ+ 8)2 − 1) + 4(−4− 4λ− 32) + 4(−4− 4λ− 32) = 0

λ3 + 9λ2 − 81λ− 729 = 0

(λ+ 9)(λ2 − 81) = 0

Thus λ = 9,−9,−9.

1. λ = 9. If (x1, x2, x3) is the eigenvector corresponding to λ = 9, we get

2x1 − 4x2 + 4x3 = 0

−4x1 + 17x2 + x3 = 0

4x1 + x2 + 17x3 = 0

From the second and third we get 18x2+18x3 = 0. Take x2 = 1. Then x3 = −1, x1 = 4,
so (4, 1,−1) is an eigenvector for λ = 9.

2. λ = −9. If (x1, x2, x3) is the eigenvector corresponding to λ = −9, we get

−16x1 − 4x2 + 4x3 = 0

−4x1 − x2 + x3 = 0

4x1 + x2 − x3 = 0

There is only one equation 4x1 + x2 − x3 = 0. Take x1 = 0, x2 = 1, then x3 = 1,
so (0, 1, 1) is an eigenvector. Take x1 = −1, x2 = 2, then x3 = −2, so (−1, 2,−2) is
another eigenvector. These two are orthogonal to each other and are eigenvectors for
λ = −9. Note that to make the second vector orthogonal to the first, we needed to
ensure x2 = −x3, then the equation suggested values for x1, x2.

Let

P =

 0 −1
3

4√
18

1√
2

2
3

1√
18

1√
2
−2

3
− 1√

18
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Clearly P′P = I, since the columns of P are mutually orthogonal unit vectors. Moreover from

Ax = xλ for the eigenvalues and eigenvectors, it follows that AP = P

 −9 0 0
0 −9 0
0 0 9

.

Thus P−1AP =

 −9 0 0
0 −9 0
0 0 9

, which is diagonal as required.

Question 2(d) Show that the real quadratic form

Φ = n(x2
1 + x2

2 + . . .+ x2
n)− (x1 + x2 + . . .+ xn)2

in n variables is positive semi-definite.

Solution. Consider the expression

E = (X − x1)
2 + . . .+ (X − xn)2

= nX2 − 2X(x1 + . . .+ xn) + (x2
1 + x2

2 + . . .+ x2
n)

Clearly E being the sum of squares is non-negative, i.e. E ≥ 0. Let

A =
(x1 + x2 + . . .+ xn)

n
B =

(x2
1 + x2

2 + . . .+ x2
n)

n

Then E = n(X2− 2AX +B) = n((X −A)2 +B −A2). When X = A, E = n(B −A2) = Φ,
and since E ≥ 0, Φ ≥ 0.

If x1 = x2 = . . . = xn = 1, then Φ = 0 showing that Φ is actually positive semi-definite.
Alternate solution. By Cauchy’s inequality(

n∑
i=1

a2
i

)(
n∑
i=1

b2i

)
≥

(
n∑
i=1

aibi

)2

Setting b1 = b2 = . . . = bn = 1, we get

n

(
n∑
i=1

a2
i

)
−

(
n∑
i=1

ai

)2

≥ 0

showing that Φ is positive semi-definite.

4


