UPSC Civil Services Main 2001 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question 1(a) Show that the vectors $(1,0,-1),(0,-3,2)$ and $(1,2,1)$ form a basis of the vector space $\mathbb{R}^{3}(\mathbb{R})$.

Solution. Since $\operatorname{dim}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)=3$, it is enough to prove that these are linearly independent. If possible, let

$$
a(1,0,-1)+b(0,-3,2)+c(1,2,1)=0
$$

This implies

$$
a+c=0,-3 b+2 c=0,-a+2 b+c=0
$$

Solving for $c, c+\frac{4}{3} c+c=0$, so $c=0$, hence $a=b=0$. (Note that if these linearly independent vectors were not a basis, they could be completed into one, but in \mathbb{R}^{3} any four vectors are linearly dependent, so this is a maximal linearly independent set, hence it is a basis.

Alternate Solution. Since $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, to show that $(1,0,-1),(0,-3,2)$ and $(1,2,1)$ form a basis it is enough to show that these vectors generate \mathbb{R}^{3}. In fact, given $\left(x_{1}, x_{2}, x_{3}\right)$, we can always find a, b, c s.t. $\left(x_{1}, x_{2}, x_{3}\right)=a(1,0,-1)+b(0,-3,2)+c(1,2,1)$ as follows: $a+c=x_{1},-3 b+2 c=x_{2},-a+2 b+c=x_{3}$. Thus $\left(c-x_{1}\right)+2\left(2 c-x_{2}\right) / 3+c=x_{3}$, so $c+\frac{4}{3} c+c=x_{1}+\frac{2}{3} x_{2}+x_{3}$. Thus $c=\frac{3 x_{1}+2 x_{2}+3 x_{3}}{10}, a=x_{1}-c=\frac{7 x_{1}-2 x_{2}-3 x_{3}}{10}$, and $b=\frac{2 c-x_{2}}{3}=\frac{x_{1}-x_{2}+x_{3}}{5}$.

Question 1(b) If λ is a characteristic root of a non-singular matrix \mathbf{A}, then prove that $\frac{|\mathbf{A}|}{\lambda}$ is a characteristic root of $\mathbf{A d j} \mathbf{A}$.

Solution. If μ is a characteristic root of \mathbf{A}, then $a \mu$ is a characteristic root of $a \mathbf{A}$ for a constant a, because if $\mathbf{A v}=\mu \mathbf{v}, \mathbf{v} \neq 0$ a vector, then $a \mathbf{A} \mathbf{v}=a \mu \mathbf{v}$. Hence the result.

If λ is the characteristic root of $\mathbf{A},|\mathbf{A}| \neq 0$, then $\lambda \neq 0$, and λ^{-1} is a characteristic root of \mathbf{A}^{-1}, because $\mathbf{A v}=\lambda \mathbf{v} \Longrightarrow \mathbf{A}^{-1} \mathbf{v}=\lambda^{-1} \mathbf{v}$.

Since $\operatorname{Adj} \mathbf{A}=\mathbf{A}^{-1}|\mathbf{A}|$, it follows that $\frac{|\mathbf{A}|}{\lambda}$ is a characteristic root of $\mathbf{A d j} \mathbf{A}$.

Question 2(a) If $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ show that for all integers $n \geq 3, \mathbf{A}^{n}=\mathbf{A}^{n-2}+\mathbf{A}^{2}-\mathbf{I}$. Hence determine \mathbf{A}^{50}.

Solution. Characteristic equation of \mathbf{A} is

$$
\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
1 & \lambda & 1 \\
0 & 1 & \lambda
\end{array}\right|=0
$$

or $(\lambda-1)\left(\lambda^{2}-1\right)=\lambda^{3}-\lambda^{2}-\lambda+1=0$. From the Cayley-Hamilton theorem, $\mathbf{A}^{3}-\mathbf{A}^{2}-\mathbf{A}+\mathbf{I}=$ $0 \Rightarrow \mathbf{A}^{3}=\mathbf{A}+\mathbf{A}^{2}-\mathbf{I}$. Thus the result is true for $n=3$. Suppose the theorem is true for $n=m$ i.e. $\mathbf{A}^{m}=\mathbf{A}^{m-2}+\mathbf{A}^{2}-\mathbf{I}$. We shall prove it for $m+1$.

$$
\begin{aligned}
\mathbf{A}^{m+1} & =\mathbf{A}^{m} \mathbf{A} \\
& =\left(\mathbf{A}^{m-2}+\mathbf{A}^{2}-\mathbf{I}\right) \mathbf{A} \\
& =\mathbf{A}^{m-1}+\mathbf{A}^{3}-\mathbf{A} \\
& =\mathbf{A}^{m-1}+\mathbf{A}^{2}+\mathbf{A}-\mathbf{A}-\mathbf{I} \\
& =\mathbf{A}^{m-1}+\mathbf{A}^{2}-\mathbf{I}
\end{aligned}
$$

The result follows by induction.
Let $n=2 m$. Using successively $\mathbf{A}^{n}=\mathbf{A}^{n-2}+\mathbf{A}^{2}-\mathbf{I}$, we get $\mathbf{A}^{2 m}=m \mathbf{A}^{2}-(m-1) \mathbf{I}$. Now

$$
\mathbf{A}^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

so

$$
\begin{aligned}
\mathbf{A}^{50} & =25 \mathbf{A}^{2}-24 \mathbf{I} \\
& =\left(\begin{array}{ccc}
25 & 0 & 0 \\
25 & 25 & 0 \\
25 & 0 & 25
\end{array}\right)-\left(\begin{array}{ccc}
24 & 0 & 0 \\
0 & 24 & 0 \\
0 & 0 & 24
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Question 2(b) When is a square matrix \mathbf{A} said to be congruent to a square matrix \mathbf{B} ? Prove that every matrix congruent to a skew-symmetric matrix is skew-symmetric.

Solution. $\mathbf{A} \equiv \mathbf{B}$ if $\exists \mathbf{P}$ nonsingular, s.t. $\mathbf{P}^{\prime} \mathbf{A P}=\mathbf{B}$. If $\mathbf{S}^{\prime}=-\mathbf{S}$ then $\left(\mathbf{P}^{\prime} \mathbf{S P}\right)^{\prime}=\mathbf{P}^{\prime} \mathbf{S}^{\prime} \mathbf{P}=$ $-\left(\mathbf{P}^{\prime} \mathbf{S P}\right)$, so $\mathbf{P}^{\prime} \mathbf{S P}$ is also skew-symmetric.

Question 2(c) Determine the orthogonal matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}$ is diagonal where $\mathbf{A}=\left(\begin{array}{ccc}7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8\end{array}\right)$.

Solution. The characteristic equation is

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-7 & -4 & 4 \\
-4 & \lambda+8 & 1 \\
4 & 1 & \lambda+8
\end{array}\right| & =0 \\
(\lambda-7)\left((\lambda+8)^{2}-1\right)+4(-4-4 \lambda-32)+4(-4-4 \lambda-32) & =0 \\
\lambda^{3}+9 \lambda^{2}-81 \lambda-729 & =0 \\
(\lambda+9)\left(\lambda^{2}-81\right) & =0
\end{aligned}
$$

Thus $\lambda=9,-9,-9$.

1. $\lambda=9$. If $\left(x_{1}, x_{2}, x_{3}\right)$ is the eigenvector corresponding to $\lambda=9$, we get

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+4 x_{3}=0 \\
-4 x_{1}+17 x_{2}+x_{3}=0 \\
4 x_{1}+x_{2}+17 x_{3}=0
\end{array}
$$

From the second and third we get $18 x_{2}+18 x_{3}=0$. Take $x_{2}=1$. Then $x_{3}=-1, x_{1}=4$, so $(4,1,-1)$ is an eigenvector for $\lambda=9$.
2. $\lambda=-9$. If $\left(x_{1}, x_{2}, x_{3}\right)$ is the eigenvector corresponding to $\lambda=-9$, we get

$$
\begin{array}{r}
-16 x_{1}-4 x_{2}+4 x_{3}=0 \\
-4 x_{1}-x_{2}+x_{3}=0 \\
4 x_{1}+x_{2}-x_{3}=0
\end{array}
$$

There is only one equation $4 x_{1}+x_{2}-x_{3}=0$. Take $x_{1}=0, x_{2}=1$, then $x_{3}=1$, so $(0,1,1)$ is an eigenvector. Take $x_{1}=-1, x_{2}=2$, then $x_{3}=-2$, so $(-1,2,-2)$ is another eigenvector. These two are orthogonal to each other and are eigenvectors for $\lambda=-9$. Note that to make the second vector orthogonal to the first, we needed to ensure $x_{2}=-x_{3}$, then the equation suggested values for x_{1}, x_{2}.

Let

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & -\frac{1}{3} & \frac{4}{\sqrt{18}} \\
\frac{1}{\sqrt{2}} & \frac{2}{3} & \frac{1}{\sqrt{18}} \\
\frac{1}{\sqrt{2}} & -\frac{2}{3} & -\frac{1}{\sqrt{18}}
\end{array}\right)
$$

Clearly $\mathbf{P}^{\prime} \mathbf{P}=\mathbf{I}$, since the columns of \mathbf{P} are mutually orthogonal unit vectors. Moreover from
$\mathbf{A} \mathbf{x}=\mathbf{x} \lambda$ for the eigenvalues and eigenvectors, it follows that $\mathbf{A P}=\mathbf{P}\left(\begin{array}{ccc}-9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 9\end{array}\right)$.
Thus $\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{ccc}-9 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 9\end{array}\right)$, which is diagonal as required.
Question 2(d) Show that the real quadratic form

$$
\Phi=n\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)-\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}
$$

in n variables is positive semi-definite.
Solution. Consider the expression

$$
\begin{aligned}
E & =\left(X-x_{1}\right)^{2}+\ldots+\left(X-x_{n}\right)^{2} \\
& =n X^{2}-2 X\left(x_{1}+\ldots+x_{n}\right)+\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)
\end{aligned}
$$

Clearly E being the sum of squares is non-negative, i.e. $E \geq 0$. Let

$$
A=\frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)}{n} \quad B=\frac{\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)}{n}
$$

Then $E=n\left(X^{2}-2 A X+B\right)=n\left((X-A)^{2}+B-A^{2}\right)$. When $X=A, E=n\left(B-A^{2}\right)=\Phi$, and since $E \geq 0, \Phi \geq 0$.

If $x_{1}=x_{2}=\ldots=x_{n}=1$, then $\Phi=0$ showing that Φ is actually positive semi-definite.
Alternate solution. By Cauchy's inequality

$$
\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}
$$

Setting $b_{1}=b_{2}=\ldots=b_{n}=1$, we get

$$
n\left(\sum_{i=1}^{n} a_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i}\right)^{2} \geq 0
$$

showing that Φ is positive semi-definite.

