UPSC Civil Services Main 2002 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

June 14, 2007

Question $\mathbf{1}(\mathbf{a})$ Show that the mapping $\mathbf{T}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ where $\mathbf{T}(a, b, c)=(a-b, b-c, a+c)$ is linear and non-singular.

Solution.

$$
\begin{aligned}
\mathbf{T}(\lambda a, \lambda b, \lambda c) & =(\lambda(a-b), \lambda(b-c), \lambda(a+c)) \\
& =\lambda(a-b, b-c, a+c) \\
& =\lambda \mathbf{T}(a, b, c) \\
\mathbf{T}(a, b, c)+\mathbf{T}(x, y, z) & =(a-b, b-c, a+c)+(x-y, y-z, x+z) \\
& =(a-b+x-y, b-c+y-z, a+c+x+z) \\
& =\mathbf{T}(a+x, b+y, c+z)
\end{aligned}
$$

Thus \mathbf{T} is linear.
Now we show that

$$
\begin{aligned}
\mathbf{T}(1,0,0) & =(1,0,1) \\
\mathbf{T}(0,1,0) & =(-1,1,0) \\
\mathbf{T}(0,0,1) & =(0,-1,1)
\end{aligned}
$$

are linearly independent.

$$
\begin{aligned}
& a_{1}(1,0,1)+a_{2}(-1,1,0)+a_{3}(0,-1,1)=0 \\
\Rightarrow & a_{1}-a_{2}=0, a_{2}-a_{3}=0, a_{1}+a_{3}=0 \\
\Rightarrow & a_{1}=a_{2}=a_{3}=0
\end{aligned}
$$

Thus $(1,0,1),(-1,1,0),(0,-1,1)$ are linearly independent.
Since $(1,0,0),(0,1,0),(0,0,1)$ generate $\mathbb{R}^{3},(1,0,1),(-1,1,0),(0,-1,1)$ generate $\mathbf{T}\left(\mathbb{R}^{3}\right)$, hence $\operatorname{dim}\left(\mathbf{T}\left(\mathbb{R}^{3}\right)\right)=3$. Thus \mathbf{T} is non-singular.

Alternatively,

$$
\mathbf{T}(a, b, c)=(0,0,0) \Longleftrightarrow a-b=0, b-c=0, a+c=0 \Longrightarrow a=b=c=0
$$

Thus \mathbf{T} is 1-1, therefore it is onto, which shows it is nonsingular.

Question 1(b) Prove that a square matrix A is non-singular if and only if the constant term in its characteristic polynomial is different from 0.

Solution. Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

Then characteristic polynomial of $\mathbf{A}=\operatorname{Det}(x \mathbf{I}-\mathbf{A}) . \mathbf{I}=n \times n$ unit matrix. Clearly

$$
\operatorname{Det}(x \mathbf{I}-\mathbf{A})=x^{n}-\sum_{i=1}^{n} a_{i i} x^{n-1}+\ldots+(-1)^{n} \operatorname{Det} \mathbf{A}
$$

Thus \mathbf{A} is nonsingular iff the constant term in the characteristic polynomial of $\mathbf{A} \neq 0$.
Question 2(a) Let $T: \mathbb{R}^{5} \longrightarrow \mathbb{R}^{5}$ be a linear mapping given by $T(a, b, c, d, e)=(b-d, d+$ $e, b, 2 d+e, b+e)$. Obtain bases for its null space and range space.

Solution. Clearly

$$
\begin{aligned}
& T(1,0,0,0,0)=(0,0,0,0,0) \\
& T(0,1,0,0,0)=(1,0,1,0,1) \\
& T(0,0,1,0,0)=(0,0,0,0,0) \\
& T(0,0,0,1,0)=(-1,1,0,2,0) \\
& T(0,0,0,0,1)=(0,1,0,1,1)
\end{aligned}
$$

are generators of the range space of T. In fact, if $\mathbf{v}_{\mathbf{1}}=(1,0,1,0,1), \mathbf{v}_{\mathbf{2}}=(-1,1,0,2,0), \mathbf{v}_{\mathbf{3}}=$ $(0,1,0,1,1)$ then $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ generate $T\left(\mathbb{R}^{5}\right)$. We now show that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent. Let $\alpha_{1} \mathbf{v}_{\mathbf{1}}+\alpha_{2} \mathbf{v}_{\mathbf{2}}+\alpha_{3} \mathbf{v}_{\mathbf{3}}=0$. Then $\alpha_{1}-\alpha_{2}=0, \alpha_{2}+\alpha_{3}=0, \alpha_{1}=0 \Rightarrow \alpha_{2}=\alpha_{3}=0$. Thus $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are linearly independent over $\mathbb{R} \Rightarrow T\left(\mathbb{R}^{5}\right)$ is of dimension 3 with basis $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.

Thus the null space is of dimension 2 , because $\operatorname{dim}($ null space $)+\operatorname{dim}($ range space $)=$ $\operatorname{dim}\left(\right.$ given vector space $\left.=\mathbb{R}^{5}\right)=5$. Since $\mathbf{e}_{\mathbf{1}}=(1,0,0,0,0)$ and $\mathbf{e}_{\mathbf{3}}=(0,0,1,0,0)$ belong to the null space of T, and both are linearly independent over $\mathbb{R}, \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{3}}$ is a basis of the null space of T.

Question 2(b) Let A be a 3×3 real symmetric matrix with eigenvalues $0,0,5$. If the corresponding eigenvectors are $(2,0,1),(2,1,1),(1,0,-2)$ then find the matrix \mathbf{A}.

Solution. Let $\mathbf{P}=\left(\begin{array}{ccc}2 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -2\end{array}\right)$, then $\mathbf{P}^{-\mathbf{1}} \mathbf{A P}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right)$, so $\mathbf{A}=\mathbf{P}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5\end{array}\right) \mathbf{P}^{\boldsymbol{- 1}}$.
A simple calculation shows that $\mathbf{P}^{-\mathbf{1}}=\left(\begin{array}{ccc}\frac{2}{5} & -1 & \frac{1}{5} \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & -\frac{2}{5}\end{array}\right)$, therefore

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 2 & 1 \\
0 & 1 & 0 \\
1 & 1 & -2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 5
\end{array}\right)\left(\begin{array}{ccc}
\frac{2}{5} & -1 & \frac{1}{5} \\
0 & 1 & 0 \\
\frac{1}{5} & 0 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
-2 & 0 & 4
\end{array}\right)
$$

Thus $\left(\begin{array}{ccc}1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4\end{array}\right)$ is the required symmetric matrix with $0,0,5$ as eigenvalues.
Question 2(c) Solve the following system of linear equations:

$$
\begin{aligned}
x_{1}-2 x_{2}-3 x_{3}+4 x_{4} & =-1 \\
-x_{1}+3 x_{2}+5 x_{3}-5 x_{4}-2 x_{5} & =0 \\
2 x_{1}+x_{2}-2 x_{3}+3 x_{4}-4 x_{5} & =17
\end{aligned}
$$

Solution. There are three equations in 5 unknowns, therefore the rank of the coefficient matrix ≤ 3. Since $\left|\begin{array}{ccc}1 & -2 & -3 \\ -1 & 3 & 5 \\ -2 & 1 & -2\end{array}\right|=1(-6-5)+2(2-10)+(-3)(-1-6)=-6$, the rank of the coefficient matrix is 3 . Using Cramer's rule we solve the system

$$
\begin{align*}
x_{1}-2 x_{2}-3 x_{3} & =-1-4 x_{4} \tag{1}\\
-x_{1}+3 x_{2}+5 x_{3} & =5 x_{4}+2 x_{5} \tag{2}\\
2 x_{1}+x_{2}-2 x_{3} & =17-3 x_{4}+4 x_{5} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
x_{1} & =-\frac{1}{6}\left|\begin{array}{ccc}
-1-4 x_{4} & -2 & -3 \\
5 x_{4}+2 x_{5} & 3 & 5 \\
17-3 x_{4}+4 x_{5} & 1 & -2
\end{array}\right| \\
& =-\frac{1}{6}\left[\left(-1-4 x_{4}\right)(-11)-3\left(5 x_{4}+2 x_{5}-51+9 x_{4}-12 x_{5}\right)+2\left(-10 x_{4}-4 x_{5}-85+15 x_{4}-20 x_{5}\right)\right] \\
& =-\frac{1}{6}\left[-6+44 x_{4}-42 x_{4}+10 x_{4}+30 x_{5}-48 x_{5}\right] \\
& =1-2 x_{4}+3 x_{5} \\
x_{2} & =-\frac{1}{6}\left|\begin{array}{ccc}
1 & -1-4 x_{4} & -3 \\
-1 & 5 x_{4}+2 x_{5} & 5 \\
2 & 17-3 x_{4}+4 x_{5} & -2
\end{array}\right| \\
& =-\frac{1}{6}\left[-10 x_{4}-4 x_{5}-85+15 x_{4}-20 x_{5}-8-32 x_{4}+51-9 x_{4}+12 x_{5}+30 x_{4}+12 x_{5}\right] \\
& =-\frac{1}{6}\left[-42-6 x_{4}\right] \\
& =7+x_{4} \\
& =-\frac{1}{6} \left\lvert\, \begin{array}{cc}
1 & -2 \\
-1 & 3 \\
2 & 1
\end{array} \quad 17-3 x_{4}+2 x_{5}\right. \\
x_{3} & =-\frac{1}{6}\left[51-9 x_{4}+12 x_{5}-5 x_{4}-2 x_{5}-34+6 x_{4}-8 x_{5}-20 x_{4}-8 x_{5}+7+28 x_{4}\right] \\
& =-\frac{1}{6}\left[24-6 x_{5}\right] \\
& =-4+x_{5}
\end{aligned}
$$

The solution space is $\left(1-2 x_{4}+3 x_{5}, 7+x_{4},-4+x_{5}, x_{4}, x_{5}\right)$, where $x_{4}, x_{5} \in \mathbb{R}$ (arbitrarily). Note that the vector space of solutions is of dimension 2.

Alternate Method.

$$
\begin{align*}
x_{2}+2 x_{3} & =-1+x_{4}+2 x_{5} \text { adding }(1) \text { and }(2) \tag{4}\\
7 x_{2}+8 x_{3} & =17+7 x_{4}+8 x_{5} \text { adding } 2 \times(2) \text { and }(3) \tag{5}\\
6 x_{3} & =-24+6 x_{5} \text { using } 7 \times(4)-(5) \tag{6}\\
x_{2} & =7+x_{4} \text { from }(4) \text { and }(6) \tag{7}\\
x_{1} & =1-2 x_{4}+3 x_{5} \text { using (1), (6), (7) } \tag{8}
\end{align*}
$$

The solution space is as shown above.

Question 2(d) Use Cayley-Hamilton theorem to find the inverse of the following matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right)
$$

Solution. Characteristic polynomial is given by $|x \mathbf{I}-\mathbf{A}|=0$, where \mathbf{I} is the 3×3 unit matrix.

$$
\begin{aligned}
\left|\begin{array}{ccc}
x & -1 & -2 \\
-1 & x-2 & -3 \\
-3 & -1 & x-1
\end{array}\right| & =0 \\
x\left[x^{2}-3 x+2-3\right]+1[-x+1-9]-2[1+3 x-6] & =0 \\
x^{3}-3 x^{2}-8 x+2 & =0
\end{aligned}
$$

By Cayley-Hamilton theorem, $\mathbf{A}^{3}-3 \mathbf{A}^{2}-8 \mathbf{A}+2 \mathbf{I}=0$, or $\mathbf{A}\left(\mathbf{A}^{2}-3 \mathbf{A}-8 \mathbf{I}\right)=-2 \mathbf{I}$. Thus

$$
\begin{aligned}
\mathbf{A}^{-1} & =-\frac{1}{2}\left(\mathbf{A}^{2}-3 \mathbf{A}-8 \mathbf{I}\right) \\
& =-\frac{1}{2}\left[\left(\begin{array}{ccc}
7 & 4 & 5 \\
11 & 8 & 11 \\
4 & 6 & 10
\end{array}\right)-\left(\begin{array}{lll}
0 & 3 & 6 \\
3 & 6 & 9 \\
9 & 3 & 3
\end{array}\right)-\left(\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right)\right] \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-4 & 3 & -1 \\
\frac{5}{2} & -\frac{3}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Check $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$.

