UPSC Civil Services Main 2003 - Mathematics Linear Algebra

Sunder Lal
Retired Professor of Mathematics
Panjab University
Chandigarh

September 16, 2007

Question $\mathbf{1 (a)}$ Let \mathcal{S} be any non-empty subset of a vector space \mathcal{V} over the field F. Show that the set $\left\{a_{1} \mathbf{x}_{\mathbf{1}}+\ldots+a_{n} \mathbf{x}_{\mathbf{n}} \mid a_{1}, \ldots, a_{n} \in F, \mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{n}} \in \mathcal{S}, n \in \mathbb{N}\right\}$ is the subspace generated by \mathcal{S}.

Solution. Let \mathcal{W} be the subset mentioned above. Let $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in \mathcal{W}$ and $a, b \in F$. Then $\mathbf{w}_{\mathbf{1}}=a_{1} \mathbf{x}_{\mathbf{1}}+\ldots a_{r} \mathbf{x}_{\mathbf{r}}$, where $a_{1}, \ldots, a_{r} \in F, \mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{r}} \in \mathcal{S}$ and $\mathbf{w}_{\mathbf{2}}=b_{1} \mathbf{y}_{\mathbf{1}}+\ldots b_{s} \mathbf{y}_{\mathbf{s}}$ where $b_{1}, \ldots b_{s} \in F, \mathbf{y}_{\mathbf{1}}, \ldots, \mathbf{y}_{\mathbf{s}} \in \mathcal{S}$. Now $\alpha \mathbf{w}_{\mathbf{1}}+\beta \mathbf{w}_{\mathbf{2}}=c_{1} \mathbf{z}_{\mathbf{1}}+\ldots+c_{r+s} \mathbf{z}_{\mathbf{r}+\mathbf{s}}$, where $c_{i}=\alpha a_{i}, 1 \leq i \leq$ $r, c_{j+r}=\beta b_{j}, 1 \leq j \leq s$, and $\mathbf{z}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}, 1 \leq i \leq r, \mathbf{z}_{\mathbf{j}+\mathbf{r}}=\mathbf{y}_{\mathbf{j}}, 1 \leq j \leq s$. Clearly $c_{j} \in F, \mathbf{z}_{\mathbf{j}} \in \mathcal{S}$ for $1 \leq j \leq r+s$, showing that for any $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in \mathcal{W}, \alpha, \beta \in F, \alpha \mathbf{w}_{\mathbf{1}}+\beta \mathbf{w}_{\mathbf{2}} \in \mathcal{W}$, moreover $\mathcal{W} \neq \emptyset$ as $\mathcal{S} \subseteq \mathcal{W}$ and $\mathcal{S} \neq \emptyset$. Thus \mathcal{W} is a subspace of \mathcal{V}.

Question 1(b) If $\mathbf{A}=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$, then find the matrix represented by $2 \mathbf{A}^{10}-10 \mathbf{A}^{9}+$ $14 \mathbf{A}^{8}-6 \mathbf{A}^{7}-3 \mathbf{A}^{6}+15 \mathbf{A}^{5}-21 \mathbf{A}^{4}+9 \mathbf{A}^{3}+\mathbf{A}-\mathbf{I}$.

Solution. The characteristic equation of \mathbf{A} is

$$
|\mathbf{A}-x \mathbf{I}|=\left|\begin{array}{ccc}
2-x & 1 & 1 \\
0 & 1-x & 0 \\
1 & 1 & 2-x
\end{array}\right|=(2-x)^{2}(1-x)-(1-x)=0
$$

or $(1-x)\left(4-4 x+x^{2}\right)-1+x=3-7 x+5 x^{2}-x^{3}=0$, or $x^{3}-5 x^{2}+7 x-3=0$. By the

Cayley-Hamilton theorem, we get $\mathbf{A}^{3}-5 \mathbf{A}^{2}+7 \mathbf{A}-3 \mathbf{I}=\mathbf{0}$. Now

$$
\begin{aligned}
& 2 \mathbf{A}^{10}-10 \mathbf{A}^{9}+14 \mathbf{A}^{8}-6 \mathbf{A}^{7}-3 \mathbf{A}^{6}+15 \mathbf{A}^{5}-21 \mathbf{A}^{4}+9 \mathbf{A}^{3}+\mathbf{A}-\mathbf{I} \\
= & 2 \mathbf{A}^{7}\left[\mathbf{A}^{3}-5 \mathbf{A}^{2}+7 \mathbf{A}-3 \mathbf{I}\right]-3 \mathbf{A}^{3}\left[\mathbf{A}^{3}-5 \mathbf{A}^{2}+7 \mathbf{A}-3 \mathbf{I}\right]+\mathbf{A}-\mathbf{I} \\
= & 2 \mathbf{A}^{7} \mathbf{0}-3 \mathbf{A}^{3} \mathbf{0}+\mathbf{A}-\mathbf{I} \\
= & \mathbf{A}-\mathbf{I}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

which is the required value.

Question 2(a) Prove that the eigenvectors corresponding to distinct eigenvalues of a square matrix are linearly independent.

Solution. Let $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of the square matrix \mathbf{A}.

We will show that if any subset of the vectors $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}$ is linearly dependent, then we can find a smaller set that is also linearly dependent - but this leads to a contradiction as the eigenvectors are all non-zero.

Suppose, without loss of generality, that $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{r}}$ are linearly dependent. Thus there exist $\alpha_{1}, \ldots \alpha_{r} \in \mathbb{R}$, not all zero, such that

$$
\begin{equation*}
\alpha_{1} \mathbf{x}_{\mathbf{1}}+\ldots+\alpha_{r} \mathbf{x}_{\mathbf{r}}=\mathbf{0} \tag{1}
\end{equation*}
$$

Thus $\mathbf{A}\left(\alpha_{1} \mathbf{x}_{\mathbf{1}}+\ldots+\alpha_{r} \mathbf{x}_{\mathbf{r}}\right)=\mathbf{0} \Rightarrow \alpha_{1} \lambda_{1} \mathbf{x}_{\mathbf{1}}+\ldots+\alpha_{r} \lambda_{r} \mathbf{x}_{\mathbf{r}}=\mathbf{0}$. Multiplying (1) by λ_{1} and subtracting, we have $\alpha_{2}\left(\lambda_{2}-\lambda_{1}\right) \mathbf{x}_{\mathbf{2}}+\ldots+\alpha_{r}\left(\lambda_{r}-\lambda_{1}\right) \mathbf{x}_{\mathbf{r}}=\mathbf{0}$. Now $\alpha_{i} \neq 0 \Rightarrow \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) \neq$ 0 , so not all $\alpha_{i}\left(\lambda_{i}-\lambda_{1}\right)$ can be zero, so we have a smaller set $\mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{r}}$ which is also linearly dependent. This leads us to the contradiction mentioned above, hence the vectors $\mathrm{x}_{\mathbf{1}}, \mathrm{x}_{\mathbf{2}}, \ldots, \mathrm{x}_{\mathrm{k}}$ must be linearly independent.

Question 2(b) If \mathbf{H} is a Hermitian matrix, then show that $(\mathbf{H}+i \mathbf{I})^{-1}(\mathbf{H}-i \mathbf{I})$ is a unitary matrix. Also show that every unitary matrix \mathbf{A} can be written in this form provided 1 is not an eigenvalue of \mathbf{A}.

Solution. See related results of 1989, question 2(b).
Question 2(c) If $\mathbf{A}=\left(\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right)$ then find a diagonal matrix \mathbf{D} and a matrix \mathbf{B} such that $\mathbf{A}=\mathbf{B D B}{ }^{\prime}$ where \mathbf{B}^{\prime} denotes the transpose of \mathbf{B}.

Solution. Let $\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right) \mathbf{A}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ be the quadratic form associated with A. Then

$$
\begin{aligned}
\mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right) & =6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{3} \\
& =6\left[x_{1}-\frac{1}{3} x_{2}+\frac{1}{3} x_{3}\right]^{2}+\frac{7}{3} x_{2}^{2}+\frac{7}{3} x_{3}^{2}-\frac{2}{3} x_{2} x_{3} \\
& =6\left[x_{1}-\frac{1}{3} x_{2}+\frac{1}{3} x_{3}\right]^{2}+\frac{7}{3}\left[x_{2}-\frac{1}{7} x_{3}\right]^{2}+\frac{16}{7} x_{3}^{2}
\end{aligned}
$$

Let $X_{1}=x_{1}-\frac{1}{3} x_{2}+\frac{1}{3} x_{3}, X_{2}=x_{2}-\frac{1}{7} x_{3}, X_{3}=x_{3}$ and $\mathbf{D}=\left(\begin{array}{ccc}6 & 0 & 0 \\ 0 & \frac{7}{3} & 0 \\ 0 & 0 & \frac{16}{7}\end{array}\right)$. Then

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right) \mathbf{A}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right) \mathbf{B D B}^{\prime}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{lll}
X_{1} & X_{2} & X_{3}
\end{array}\right) \mathbf{D}\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)
$$

where $\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)=\left(\begin{array}{ccc}1 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & -\frac{1}{7} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\mathbf{B}^{\prime}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Thus $\mathbf{A}=\mathbf{B D B}^{\prime}$ where $\mathbf{D}=\left(\begin{array}{ccc}6 & 0 & 0 \\ 0 & \frac{7}{3} & 0 \\ 0 & 0 & \frac{16}{7}\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -\frac{1}{3} & 1 & 0 \\ \frac{1}{3} & -\frac{1}{7} & 1\end{array}\right)$

Question 2(d) Reduce the quadratic form given below to canonical form and find its rank and signature:

$$
x^{2}+4 y^{2}+9 z^{2}+u^{2}-12 y x+6 z x-4 z y-2 x u-6 z u
$$

Solution. Let

$$
\begin{aligned}
\mathbb{Q}(x, y, z, u) & =x^{2}+4 y^{2}+9 z^{2}+u^{2}-12 y x+6 z x-4 z y-2 x u-6 z u \\
& =(x-6 y+3 z-u)^{2}-32 y^{2}+32 y z-12 y u \\
& =(x-6 y+3 z-u)^{2}-32\left(y^{2}-y z+\frac{3}{8} y u\right) \\
& =(x-6 y+3 z-u)^{2}-32\left(y-\frac{1}{2} z+\frac{3}{4} u\right)^{2}+8 z^{2}+18 u^{2}-24 u z \\
& =(x-6 y+3 z-u)^{2}-32\left(y-\frac{1}{2} z+\frac{3}{4} u\right)^{2}+8\left(z-\frac{3}{2} u\right)^{2}
\end{aligned}
$$

Put

$$
\begin{aligned}
X & =x-6 y+3 z-u \\
Y & =y-\frac{1}{2} z+\frac{3}{4} u \\
Z & =z-\frac{3}{2} u \\
U & =u
\end{aligned}
$$

so that $\mathbb{Q}(x, y, z, u)$ is transformed to $X^{2}-32 Y^{2}+8 Z^{2}$. We now put $X^{*}=X, Y^{*}=$ $\sqrt{32} Y, Z^{*}=\sqrt{8} Z, U^{*}=U$ to get $X^{*^{2}}-Y^{*^{2}}+Z^{* 2}$ as the canonical form of $\mathbb{Q}(x, y, z, u)$.

Rank of $\mathbb{Q}(x, y, z, u)=3=$ rank of the associated matrix. Signature of $\mathbb{Q}(x, y, z, u)=$ number of positive squares - number of negative squares $=2-1=1$.

