सिविल इंजीनियरी

प्रश्न-पत्र-I

CIVIL ENGINEERING

Paper-I

निधीरित समय : तीन घंटे
Time Allowed : Three Hours

अधिकतम अंक : 250
Maximum Marks : 250

प्रश्न-पत्र के लिए विशिष्ट अनुदेश
कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को ध्यानपूर्वक पढ़ें :
दो खण्डों में, कुल आठ (8) प्रश्न दिए गए हैं जो हिन्दी एवं अंग्रेजी दोनों में छपे हैं।
उम्मीदवार को कुल पाँच प्रश्नों के उत्तर देने हैं।
प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी प्रश्नों में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर तीन प्रश्नों के उत्तर दीजिए।
प्रत्येक प्रश्न/भाग के लिए नियत अंक उसके सामने दिए, गए हैं।
प्रश्नों के उत्तर उसी प्राधिकृत माध्यम में लिखे जाने चाहिए, जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू०सी०ए०) पुस्तिका के मुखपृष्ठ पर निर्दिष्ट स्थान पर किया जाना चाहिए। प्राधिकृत माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे। प्रश्नोत्तर लिखते समय यदि कोई पूर्वधारणा की जाए, उसको स्पष्टतया निर्दिष्ट किया जाना चाहिए।
जहाँ आवश्यक हो, आरेख/चित्र उत्तर के लिए दिए गए स्थान में ही दर्शाइए।
प्रतीकों और संकेतनों के प्रचलित अर्थ हैं, ज़ब तक अन्यथा न कहा गया हो।
प्रश्नों के प्रयासों की गणना क्रमानुसार की जाएगी। आंशिक रूप से दिए गए प्रश्नों के उत्तर को भी मान्यता दी जाएगी यदि उसे काटा न गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़े गए कोई पृष्ठ अथवा पृष्ठ के भाग को पूर्णत: काट दीजिए।

OUESTION PAPER SPECIFIC INSTRUCTIONS

Please read each of the following instructions carefully before attempting questions :
There are EIGHT questions divided in Two Sections and printed both in HINDI and in ENGLISH.
Candidate has to attempt FIVE questions in all.
Question Nos. 1 and 5 are compulsory and out of the remaining, THREE questions are to be attempted choosing at least ONE question from each Section.
The number of marks carried by a question/part is indicated against it.
Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in medium other than the authorized one.
Wherever any assumptions are made for answering a question, they must be clearly indicated.
Diagrams/figures, wherever required, shall be drawn in the space provided for answering the question itself.
Unless otherwise mentioned, symbols and notations carry their usual standard meanings.
Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

SECTION-A

Q. $\mathrm{I}(\mathrm{a})$ एक 6 m लम्बी छड़ AB को स्ट्रिंग AD द्वारा सरकने से रोका जाता है, जैसा चित्र में दर्शाया गया है। छड़ का वजन 10 kN है। यह मानते हुये कि सभी सतहें चिकनी हैं, स्ट्रिंग AD में तनन का निर्धारण कीजिए।
A rod $A B 6 \mathrm{~m}$ long is held against sliding by a string AD . The rod weighs 10 kN .
Determine the tension in the string AD assuming that all surfaces are smooth. 10

Q. 1(b)ः किसी संरचना के सार्विक स्टिफनेस मैट्रिक्स में रिजिड बाडी डिस्प्लेंसमेन्ट निहित होता है। इसको किस प्रकार मॉडिफाई किया जा सकता है कि जिससे शून्य डिस्प्लेसमेन्ट वाले नोड्स का कारण बताया जा सके। दो तरीके सुझाएं।

The global stiffness matrix of a structure contains rigid body displacements. Describe how to modify it to account for nodes having zero displacements. Give two approaches. 10
Q. 1(c)

चित्र में दिये गये बीम के लिये, बंकन आघूर्ण (बीएम) आरेख बनावे, जब सपोर्ट ' B ' 10 mm सेटिल होता है। आघूर्ण वितरण विधि मेथड का इस्तेमाल करें।
Draw the B.M. diagram for the beam shown in figure when support B settles by 10 mm , using moment distribution method.
Q. 1(d) एक स्थल पर भूजल का संचलन मृदा जोन के माध्यम से हो रहा है। मृदा जोन 3 m मोटी बालू का है जिसकी कोफिसियेन्ट आफ परमिएबिलिटी (दोनों दिशा में) $0.01 \mathrm{~cm} / \mathrm{s}$ है और उसके ऊपर 1 m मोटी महीन ग्रैवेल है जिसकी कोफिसिएन्ट आफ परमिएबिलिटी $0.1 \mathrm{~cm} / \mathrm{s}$ (दोनों दिशा में) है। परत में से भौम जल के क्षैतिज और ऊर्ध्वाधर संचलनों के लिए को-ऐफिशिएंट आफ पर्मिएबिलिटी का निर्धारण कीजिए।

Downloaded From: http://iasexamportal.com

The ground water movement at a site takes place through a soil zone comprised of 3 m thick sand with coefficient of permeability $0.01 \mathrm{~cm} / \mathrm{s}$ (in both directions) overlain by 1 m thick fine gravel with coefficient of permeability $0.1 \mathrm{~cm} / \mathrm{s}$ (in both directions). Determine the coefficient of permeabilities applicable for horizontal and vertical ground water movements through the layer.
Q. 1(e) पंप अंतर्ग्रह के प्रवेश पर, वेग v, प्रवेश से चूषण पाइप तक त्रिज्यीय दूरी r के वर्ग के प्रतीपत: विचरित होता है। 1.5 m की त्रिज्यीय दूरी पर वेग $0.8 \mathrm{~ms}^{-1}$ पाया जाता है। धारा-रेखाओं को त्रिज्यीय मान कर, प्रवेश से 0.5 m और 1.25 m की दूरियों पर प्रवाह के त्वरण का परिकलन कीजिए।

At the entry of the pump intake the velocity v varies inversely as the square of the radial distance r from inlet to suction pipe. The velocity is found to be $0.8 \mathrm{~ms}^{-1}$ at a radial distance of 1.5 m . Compute the acceleration of flow at radial distances of 0.5 m and at 1.25 m , from the inlet assuming the stream-lines to be radial.
Q. 2(a) तीन भिन्न बारो पिट्स/साइटस् (Borrow pits/sites) से अर्थफिल के लिये मिट्टी उपलब्ध थी। कम्पैक्टेड स्थिति में अर्थफिल $1.0 \times 10^{5} \mathrm{~m}^{3}$ था और उसका वायड रेशियो 0.75 था। इन-सिटू (In-situ) वायड रेशियो व मूल्य (सामग्री व परिवहन लागत) तीनों साइटस् के लिये नीचे दिया गया है।

Borrow site	Void ratio	Total cost per cubic meter
1	0.8	Rs. 200
2	1.15	Rs. 180
3	1.25	Rs. 175

उपरोक्त अर्थफिल कार्य के लिये सबसे ज्यादा किफ़ायती साइट ज्ञात करें।
Material for an earthfill was available from three different borrow pits/sites. In the compacted state the fill measured $1.0 \times 10^{5} \mathrm{~m}^{3}$ at a void ratio of 0.75 . The corresponding in-situ void ratio and cost (cost of material and transportation) of the material for three sites are as follows :

Borrow site	Void ratio	Total cost per cubic meter
1	0.8	Rs. 200
2	1.15	Rs. 180
3	1.25	Rs. 175

Determine the most economical site for the above earthfill work.

Downloaded From: http://iasexamportal.com

Q. 2(b) एक सिम्पली सपोरटेड गर्डर (l-section) जिसकी विस्तृति 6.0 m है, के ऊपर दो व्हील, 200 kN प्रति व्हील, 2.5 m की दूरी पर चल रहे हैं। I -सेक्सन के उपरले और निचले फ्लैन्जेस $200 \times 200 \mathrm{~mm}$ एवं वेब प्लेट $800 \mathrm{~mm} \times 6 \mathrm{~mm}$ है।

यदि एलाउबुल बेडिंग कम्प्रेसिव, बेन्डिग टेन्साइल व औसत सियर स्ट्रेसेज $110 \mathrm{MPa}, 165 \mathrm{MPa}$ और 100 MPa कमश: हो तो, वेडिंग व सियर स्ट्रेसेज को रोकने में परिच्छेद की पर्याप्तता चेक कीजिये । गर्डर का स्वभार नज़रअंदाज किया जा सकता है।

Two wheels, placed at a distance of 2.5 m apart, with a load of 200 kN on each of them, are moving on a simply supported girder (I-section) of span 6.0 m . The top and bottom flanges of the I-section are of $200 \times 200 \mathrm{~mm}$ and the size of web plate is $800 \times 6 \mathrm{~mm}$.

If the allowable bending compressive, bending tensile and average shear stresses are $110 \mathrm{MPa}, 165 \mathrm{MPa}$ and 100 MPa respectively, check the adequacy of the section against bending and shear stresses, self weight of the girder may be neglected. 20
Q. 2(c) वायुगान के एक अनुमाप प्रतिरूप (स्केल माडल) पर उत्थापन (लिफ्ट) और विकर्ष (ड्रैग) का पूर्वनुमान लगाने के लिए संक्रियात्मक आवरण के एक खंड के दौरान $100 \mathrm{~ms}^{-1}$ पर समुद्र-स्तरीय उड़ान शामिल होती है।

प्रस्ताव है कि 5 ऐटमौस्फीयर दाब और $-90^{\circ} \mathrm{C}$ तापमान पर नाइट्रोजन के साथ क्रायोजीनिक विंड टनल का इस्तेमाल किया जाय (नाइट्रोजन के लिए $\rho=7.7 \mathrm{~kg} \mathrm{~m}^{-3}$, श्यानता $1.2 \times 10^{-5} \mathrm{Ns}$) इस तापमान पर नाइट्रोजन में ध्वनि की रफ्तार $295 \mathrm{~ms}^{-1}$ है।
पूर्ण गत्यात्मक समानता और माडल और आदिप्रूूप पर लगे हुए बलों के अनुपात को सुनिश्चित करने के लिए विंड टनल प्रवाह वेग और माडल अनुमाप का निर्धारण कीजिए।

वायु का द्रव्यमान घनत्व $1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ और श्यानता $1.8 \times 10^{-5} \mathrm{Ns}$ है।
In order to predict lift and drag forces on a scale model of an aircraft during a section of operational envelope, involves sea level flight at $100 \mathrm{~ms}^{-1}$, where the speed of sound may be taken as $340 \mathrm{~ms}^{-1}$.

It is proposed to utilise cryogenic wind tunnel with Nitrogen at 5 atmosphere of pressure and a temperature of $-90^{\circ} \mathrm{C}\left(\rho=7.7 \mathrm{~kg} \mathrm{~m}^{-3}\right.$, viscosity $1.2 \times 10^{-5} \mathrm{Ns}$ for nitrogen). The speed of sound in nitrogen at this temperature is $295 \mathrm{~ms}^{-1}$. Determine the wind tunnel flow velocity, the scale of model to ensure full dynamic similarity and, the ratio of forces acting on the model and prototype.
Mass density of air $1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and viscosity $1.8 \times 10^{-5} \mathrm{Ns}$.

Downloaded From: http://iasexamportal.com

Q. 3(a)

दिये हुये धरन के लिये ' A ' पाइन्ट पर ढलान और ' B ' पर व मध्य स्थान पर ऊर्ध्वाधर विक्षेपों का मूमेन्ट एरिया थ्योरम द्वारा निर्धारण करें। $\mathrm{EI}=$ कान्सटेन्ट लें।
Determine the slope at A , vertical deflections at B and mid span using the moment-area theorem. Take EI = Const.
Q. 3(b) एक पानी टंकी की दीवाल, का सेक्सन, अनक्रैक्ड बेसिस पर 60 kN का पुल एवं बेन्डिंग मूमेन्ट $7.5 \mathrm{kNm} / \mathrm{m}$ चौड़ाई जो पानी के फेस पर टेन्सन पैदा कर रहा है, के लिये डिजाइन करना है। M 30 ग्रेड की कन्क्रीट का और Fe 415 ग्रेड इस्पात इस्तेमाल कीजिए।
प्रभावी कवर $=30 \mathrm{~mm}$
दिये गये डाटा :
परमिसिबल स्ट्रेस इन डाइरेक्ट टेन्सन इन कन्क्रीट $=1.5 \mathrm{MPa}$
परमिसिबल स्ट्रेस इन बेन्डिंग टेन्सन इन कन्क्रीट $=2 \mathrm{MPa}$
माडुलर रेशियो $=9$
Design a section of wall of a water tank on uncracked basis to resist a pull of 60 kN and a bending moment of $7.5 \mathrm{kNm} / \mathrm{m}$ width producing tension on the water face. Use M 30 concrete and Fe 415 grade steel.
Effective cover $=30 \mathrm{~mm}$
Permissible stress in direct tension in concrete $=1.5 \mathrm{MPa}$
Permissible stress in bending tension in concrete $=2 \mathrm{MPa}$
Modular ratio $=9$
Q. 3(c) तीन पाइप को चित्र में दिसलाए तरीके से जोड़ा गया है। पाइप के करैक्टरीस्टिक्स दी गयी है :

Pipe	$\mathbf{D}(\mathbf{m m})$	$\mathbf{L}(\mathbf{m})$	\mathbf{f}
A	150	600	0.020
B	100	..	480
C	200	1200	0.032
		0.024	

प्रत्येक पाइप की प्रवाह दर ज्ञात करें। लघु हानियों को नजरअंदाज किया जा सकता है।

Downloaded From: http://iasexamportal.com

Three pipes are connected as shown in figure. The characteristics of pipe are as follows :

Pipe	$\mathbf{D}(\mathrm{mm})$	$\mathbf{L}(\mathrm{m})$	\mathbf{f}
A	150	600	0.020
B	100	480	0.032
C	200	1200	0.024

Q. 4(a) पूर्व संघनन दाब (प्री-कन्सालिडेटेड प्रेसर) क्या है ? पूर्व संघनन दाब को निकालने के तरीके का वर्णन कीजिये।

What is the preconsolidation pressure ? Describe a method to determine the preconsolidation pressure.

15
Q. 4(b) सॉफ्ट क्लेइ मृदा' में स्थित बोरहोल के तल पर इन-सिटू वेन सियर टेस्ट कराया गया। मृदा को अपरूपण करने के लिये $155 \mathrm{~N}-\mathrm{m}$ टार्क (Torque) की आवश्यकता है। वेन का व्यास 100 mm और लम्बाई 150 mm है। मृदा का अनड्रेन्ड सियर स्ट्रेन्थ (Cu) क्या था ? टार्क वेन से संबंधित, विस्तार और अनड्रेन्ड सियर स्ट्रेन्थ ऑफ सॉयल के लिये व्यंजक डिराइव करें।

An in-situ vane shear test was conducted at the bottom of a borehole in a soft clayey soil. A torque of $155 \mathrm{~N}-\mathrm{m}$ was required to shear the soil. The vane was 100 mm diameter and 150 mm long. What was the undrained shear strength, Cu of the soil? Derive the relevant expression relating to torque vane dimension, and undrained shear strength of the soil.
Q. 4(c) एक काउन्टरफोर्ट रिटेनिंग वाल चित्र में प्लान व सेक्सनल इलेवेसन द्वारा दर्शाया गया है। यह ड्राई मिट्टी जिसका घनत्व $19 \mathrm{kN} / \mathrm{m}^{3}$ व एंगिल आफ रिपोज 30° है, का प्रतिधारण कर रहा है। काउन्टरफोर्ट की डिजाइन केवल फ्लेक्चर में करें, लिमिट स्टेट डिजाइन मेथड का.इस्तेमाल करते हुये। M 30 ग्रेड की कन्क्रीट व Fe 500 ग्रेड की इस्पात इस्तेमाल की जा सकती है।

A counterfort retaining wall is shown in figure in plan and sectional elevation. It retains dry earth having a density of $19 \mathrm{kN} / \mathrm{m}^{3}$ and angle of repose of 30°. Design a counterfort in flexure only using the limit state design. Take M 30 grade of concrete and Fe 500 grade steel.

SECTION-B
Q. 5 (a) (i) एक ऊध्र्वाधर पाइप, जिससे ऐसे द्रव का प्रवाह हो सके जिसकी काइनेमेटिक विस्कासिटी $1.95 \times 10^{-3} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ व रेनाल्ड नम्बर 1500 हो, का व्यास ज्ञात करें। पाइप की पूरी लंबाई में समप्रेसर बनाए रखा जाता है।
Determine the diameter of the vertical pipe needed for a flow of a liquid of kinematic viscosity $1.95 \times 10^{-3} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at a Reynolds number of 1500 . The constant pressure is maintained throughout its length.

Downloaded From: http://iasexamportal.com

Q. 5 (a) (ii) ज्वारीय चैनल के लिये प्रोटोटाइप डेटा इ़ प्रकार है :

चैनल की लम्बाई $=18 \mathrm{~km}$, निस्सरण $=250 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
गहराई $=2.5 \mathrm{~m}$, चैनल की चौड़ाई $=50 \mathrm{~m}$
चैनल का माडल ऊर्ध्वाधर स्केल $1: 50$ व क्षैतिज स्केल 1:500 पर बनाया गया है।
ज्वारीय अवधि 12 घन्टे है।
चैनल माडेल में औसत वेग $(\mathrm{m} / \mathrm{sec})$ और ज्वारीय अवधि ज्ञात करें।
Prototype data of Tidal Channel are as follows :
Length of channel $=18 \mathrm{~km}$, Discharge $=250 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Depth $=2.5 \mathrm{~m}$, Width of the channel $=50 \mathrm{~m}$
Model is built with a vertical scale of $1: 50$ and a horizontal scale of $1: 500$
Tidal period is 12 hours
Compute the average velocity in ms^{-1} and tidal period in the model.
Q. 5(b) एक कण वर्टिकल लाइन में एक्सेलेरेसन $\mathrm{a}=3 \sqrt{v}$ में चल रहा है। $\mathrm{t}=2 \mathrm{sec}$ पर, इसका डिस्प्लेसमेंट 8 m और वेग $6 \mathrm{~m} / \mathrm{sec}$ है। समय $\mathrm{t}=4 \mathrm{sec}$ पर इसका विस्थापन, वेग और त्वरण निकालें। $\mathrm{a}=$ त्वरण तथा $\mathrm{v}=$ वेग।
A particle moves on a vertical line with an acceleration $a=3 \sqrt{v}$. At $t=2 \mathrm{sec}$, its displacement is 8 m and velocity is $6 \mathrm{~m} / \mathrm{s}$. Determine its displacement, velocity and acceleration at time $t=4 \mathrm{sec} . \mathrm{a}=$ acceleration and $v=$ velocity. 10
Q. 5 (c) एक क्षैतिज शैफ्ट जो 12 m लम्बा है, दोनों किनारों पर फिक्सड है। जब बांये कोने से देखा जाता है, तो अक्षीय युग्म (couples) 50 kNm क्लाकवाइज व 75 kNm एन्टीक्लाकवाइज 5 m व 9 m कमश: बाएं सिरे, से "ैैप्ट पर कार्य कर रहा है।
साफ्ट परंर सिरे के फिक्सिंग युग्म ज्ञात कीजिये एवं ऐसी स्थिति भी पता लगाइये जहाँ शैफ्ट पर कोई कोणीय ऐंठन न आवे।
A horizontal shaft 12 m in length is fixed at its ends. When viewed from its left end, axial couples of 50 kNm clockwise and 75 kNm counterclockwise act at 5 m and 9 m from the left end respectively.
Determine the end fixing couples and the position where the shaft suffers no angular twist.
Q. 5 (d) एक असीमित नैसर्गिक प्रवणता (स्लोप) जिसकी प्रवणता कोण 15° है (स्लोप क्षितिज से नापा गया है) में सैचुरेटेड यूनिट भार $18 \mathrm{kN} / \mathrm{m}^{3}$ व प्रभावी एंगिल आफ इन्टरनल फिक्सन $\phi=35^{\circ}$ है। ज्ञात करें प्रवणता की विफलता को रोकने का फैक्टर साफ सैफ्टी जब (i) प्रवणता पूर्ण रूप से सीपेज रहित सूखी या निम्मजित हो, (ii) जब स्लोप के सतह पर और इसके समांतर सीपेज हो रहा हो।

Downloaded From: http://iasexamportal.com

An infinite natural slope with angle of slope 15° (inclination measured from horizontal) has a saturated unit weight of $18 \mathrm{kN} / \mathrm{m}^{3}$ and an effective angle of internal friction, $\phi=35^{\circ}$. Determine the factor of safety against failure of the slope (i) when the slope is completely dry or submerged but without seepage, (ii) when seepage occurs at and parallel to the surface of the slope. 10
. 5(e) Fe 410 ग्रेड स्टील की दो प्लेटें जिनकी साइज $300 \times 10 \mathrm{~mm}$ और $280 \times 10 \mathrm{~mm}$ है को वेल्डेड लैप ज्वाइन्ट से जोड़ा गया है जैसा चित्र में दिखलाया गया है।

फील्ड वेल्ड इस्तेमाल करते हुये, वेल्डेड लैप ज्वाइन्ट की डिजाइन करें जिससे प्लेट की टेन्साइल स्ट्रेन्थ सेफ हो।

इल्ड स्ट्रेन्थ आफ मटेरियल $=250 \mathrm{MPa}$
$\gamma_{\mathrm{mo}}=1.1$
फील्ड वेल्ड की आंशिक फैक्टर आफ सेफ्टी $=1.5$
Design a welded lap joint to join two plates of size $300 \times 10 \mathrm{~mm}$ and $280 \times 10 \mathrm{~mm}$ in Fe 410 grade steel to mobilise the tensile strength of the plates using field weld.

Yield strength of material $=250 \mathrm{MPa}$
$\gamma_{\mathrm{mo}}=1.1$
Partial safety factor for field weld $=1.5$

Downloaded From: http://iasexamportal.com

Q. 6(a)

एक धरन का क्रास सेक्सन चित्र में दर्शाया गया है। इस पर ऊर्ध्वाधर अपरूपण बल 10 kN एक निर्धारिट खंड पर लगाया गया है। खंड पर अपरूपण प्रतिबल (सियर स्ट्रेस) वितरण ज्ञात करें।

A beam has a cross-section shown in figure. It is subjected to a vertical shear force of 10 kN at a given section. Determine the shear stress distribution on the section.
Q. 6 (b) (i) दो जलाशयों के बीच स्थित पाइपलाइन में एक बूस्टर पम्प लगाया गया है। यदि पम्प के द्वारा जोड़ी गई ऊर्जा 20 m है, तो पाइपलाइन में $\mathrm{m}^{3} \mathrm{~s}^{-1}$ में प्रवाह दर ज्ञात कीजिये।
पाइपलाइन की लम्बाई $=1500 \mathrm{~m}$
घर्षण गुणांक $=0.02$
पाइपलाइन का व्यास $=300 \mathrm{~mm}$
' A ' पर $\mathrm{WSEL}=200 \mathrm{~m}$
'B' परे WSEL $=185 \mathrm{~m}$
A booster pump is installed in the pipeline between two reservoirs. If the energy added by the pump is 20 m , determine the flow rate in the pipeline in $\mathrm{m}^{3} \mathrm{~s}^{-1}$.

Length of the pipeline $=1500 \mathrm{~m}$
Coefficient of friction $=0.02$
Diameter of the pipeline $=300 \mathrm{~mm}$
WSEL of $A=200 \mathrm{~m} \quad$ WSEL of $B=185 \mathrm{~m}$

Downloaded From: http://iasexamportal.com

Q. 6(b) (ii) नदी के तल पर कार्यरत अपरूपण प्रतिबल निम्नलिखित डाटा की सहायता से निकालें :

डिस्चार्ज $=5000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, रिवर बेड ढलान $=1: 2500$
प्रवाह की गहराई $=4.50 \mathrm{~m}$
मानिए कि नदी चौड़ी है।
Compute the shear stress acting on the river bed for the data given :
Discharge $=5000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, River bed slope $=1: 2500$
Depth of flow $=4.50 \mathrm{~m}$
Assume the river to be wide.
Q. 6(b) (iii) एक हाइड्रोलिक जम्प में ऊर्जा हानि 9.0 m व डाउनस्ट्रीम फाउड संख्या 0.12 है।

ज्ञात कीजिये प्रारंभिक गहराई और निस्सरण तीव्रता।
A hydraulic jump has an energy loss of 9.0 m and the downstream Froude number is 0.12 .

Determine the initial depth and the discharge intensity.
Q. 6(c) (i) वाटर-सीमेन्ट अनुपात के लिये 'अब्राहम नियम' का कथन कीजिये।
(ii) विभिन्न ग्रेड के सामान्य पोर्टलैण्ड सीमेन्ट को नामांकित कीजिये।
(iii) प्रबलन इस्पात की अभिलाक्षणिक क्षमता की परिभाषा दीजिये।
(iv) पूर्व प्रतिबलित कन्क्रीट के किन्हीं पांच उपयोगिताओं को लिखें।
(i) State the Abram's law on water-cement ratio. 5
(ii) Name the various grades of ordinary Portland cement. 5
(iii) Define characteristic strength of reinforcing steel. 5
(iv) State any five applications of prestressed concrete. 5
Q. 7(a) (i) चित्र में दिबलाए गये स्लूइस गेट के लिये यदि $\mathrm{C}_{\mathrm{v}}=0.98$ व $\mathrm{C}_{\mathrm{c}}=0.62$ हो तो, ओपनिंग की ऊंचाई ज्ञात कीजिये। दत्त : $\mathrm{V}_{1}=2.006 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~g}=9.81 \mathrm{~ms}^{-2}$ इसके साथ ही प्रति इकाई चौड़ाई पर प्रवाह का भी निर्धारण कीजिये।

For the sluice gate shown in Figure, if $\mathrm{C}_{\mathrm{v}}=0.98$ and $\mathrm{C}_{\mathrm{c}}=0.62$, what is the height of the opening? Given $\mathrm{V}_{\mathrm{l}}=2.006 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~g}=9.81 \mathrm{~ms}^{-2}$. Also determine the flow per unit width.

Downloaded From: http://iasexamportal.com

Q. 7(a) (ii) एक समलंबी वाहिका (ट्रेपेज्वाडल चैनल) जिसकी तली की चौड़ाई 20 m व साइड स्लोप $1(\mathrm{~V}): 2(\mathrm{H})$ है, में यूनीफार्म फ्लो की गहराई 1.5 m है। तली का स्लोप 1×10^{-4} है। मैनिंग रूक्षता (रफनेस) कोफिसियेन्ट $=0.2$ है। अनुप्रवाहन (डाउनस्ट्रीम) कन्ट्रोल पानी की सतह को 3 m ऊँचा कर रहा है। प्रोफाइल का वर्गीकरण करें।

The uniform flow depth is 1.5 m in a trapezoidal channel of bottom width of 20 m with a side slope of $1(\mathrm{~V}): 2(\mathrm{H})$. The bed slope is 1×10^{-4}. Manning roughness coefficient is 0.2 . The downstream control raises the water surface by 3 m . Classify the profile.
Q. 7(a) (iii) एक आयताकार चैनल के लिये निम्नलिखित डाटा दिया गया है :

चौड़ाई $=9 \mathrm{~m}, \mathrm{n}=0.017, \mathrm{~S}_{\mathrm{o}}=1: 4000$
D / S गहराई $=6.80 \mathrm{~m}, \mathrm{U} / \mathrm{S}$ गहराई $=3.6865 \mathrm{~m}$, डिस्वार्ज $=48.748 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
सिंगल स्टेप विधि का प्रयोग करते हुये, प्रोफाइल की लम्बाई निकालिये।
Following data are given for a rectangular channel :
Width $=9 \mathrm{~m}, \mathrm{n}=0.017, \mathrm{~S}_{\mathrm{o}}=1: 4000$
D / S depth is 6.80 m , U/S depth is 3.6865 m
Discharge $48.748 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
Using single step method compute the length of profile.
Q. 7(b) 9 घर्णण पाइल्स के गुप को एक क्ले मृदा में गहरी लेयर में प्रवेशित किया गया है। प्रत्येक पाइल का व्यास 0.4 m है। इम्बेडेड लम्बाई (गहराई) 12 m है व पाइल्स के बीच सेंटर टू सेंटर दूरी 1.2 m है। मृदा का संसंजन (कोहेजन) $\mathrm{c}=50 \mathrm{kN} / \mathrm{m}^{2}$, इकाई भार $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$. ज्ञात कीजिये
(i) सुरक्षा गुणंक $=3.0$ का इस्तेमाल करते हुए ब्लाक केपेसिटी (पाइल गुप की) (ii) गुपुप क्पेसिटी पाइलों की अलग-अलग विफलता पर आधारित, (iii) पाइल गुप की डिजाइन कैपेसिटी (मानिए संसंजन गुणक अधेसन फैक्टर $\alpha=0.8$)

A pile group consists of nine friction piles driven into a deep layer of clay soil. The diameter of each pile is 0.4 m , the embedded length is 12 m and center to center spacing of the piles is 1.2 m . The soil has cohesion, $\mathrm{c}=50 \mathrm{kN} / \mathrm{m}^{2}$, unit weight, $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$. Determine (i) the block capacity of the pile group using a factor of safety $=3.0$, (ii) group capacity based on individual pile failure criterion and (iii) design capacity of the pile group. (Assume adhesion factor $\alpha=0.8$) 20

Downloaded From: http://iasexamportal.com

Q. 7(c) एक त्रिज्य प्रवाह (रेडियल फ्लो) टरबाइन का निम्नलिखित डाइमेन्सन है:

बाहरी पेरिफरी त्रिज्या $r_{1}=0.5 \mathrm{~m}$
अंदर्न नी पेरिफरी त्रिज्या $r_{2}=0.3 \mathrm{~m}$
रिलेटिव वेलासिटी इनलेट पर $\left(\beta_{1}\right)$ बना कोण $=80^{\circ}$
टरबाइन के दो साइड पर प्रवाह मार्ग की चौड़ाई $=0.25 \mathrm{~m}$
फ्लो अफ $4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ टरबाइन में ज़ाता है जब रफ्तार 300 rpm है।
ऐसे ब्लेड कोण β_{2} को ज्ञात कीजिये, जिससे कि पानी रेडियली बाहर निकल सके।
टरबाइन में पानी द्वारा टार्क जेनेरेटेड को और इस प्रकार विकसित शक्ति को मालूम कीजिये।
रनर द्वारा उपयोग की जाने वाली दाबोच्चता और उसके परिणामस्वरूप शक्ति मालूम कीजिये।
मानिए प्रवेश पर कोई सटका नहीं है और कि ब्लेड नगण्य मोटाई के हैं।
A radial flow turbine has the following dimensions :
Outer periphery radius $\mathrm{r}_{1}=0.5 \mathrm{~m}$
Inner periphery radius $\mathrm{r}_{2}=0.3 \mathrm{~m}$
The angle made by the relative velocity at the inlet is $\left(\beta_{1}\right)=80^{\circ}$.
The width of the flow passage between the two sides of the turbine is 0.25 m .
The flow of $4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ goes through the turbine when the speed is 300 rpm .
Find the blade angle β_{2} such that water exit radially.
Find the torque exerted by the water in the turbine and the power thus developed.
Find the head utilised by the runner and the power resulting therefrom.
Assume no shock at the entrance and blades are of negligible thickness.
Q. 8(a) चित्र में दिये गये अर्थ प्रतिधारक संरचना के लिये, टोटल वाल पर एक्टिव प्रणोद व वाल के बेस के ऊपर स्थित इसके पाइन्ट आफ अप्लीकेशन को निकालिये। दत्त : $\mathrm{H}=5 \mathrm{~m}, \phi=30^{\circ} ; \mathrm{C}=0$, $\beta=90^{\circ}, \mathrm{h}_{\mathrm{w}}=2.0 \mathrm{~m}, \gamma_{\text {sat }}=18 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{\text {bulk }}=17 \mathrm{kN} / \mathrm{m}^{3}$ (above water table), $\mathrm{q}=250 \mathrm{kN} / \mathrm{m}^{2}$.

Downloaded From: http://iasexamportal.com

For the earth retaining structure shown in the figure, determine the total active thrust on the wall, and the point of application of the thrust above the base of the wall. Given $H=5 \mathrm{~m}, \phi=30^{\circ}, C=0, \beta=90^{\circ}, h_{w}=2.0 \mathrm{~m}, \gamma_{\text {sat }}=18 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{\text {bulk }}=17 \mathrm{kN} / \mathrm{m}^{3}$ (above water table), $\mathrm{q}=250 \mathrm{kN} / \mathrm{m}^{2}$.

Q. 8(b)

चित्र में दिये गये ट्रस के लिये, इन्फलूएन्स लाइन फोर्स इन मेम्बरस $\mathrm{U}_{3} \mathrm{~L}_{3}, \mathrm{U}_{3} \mathrm{~L}_{2}$ और $\mathrm{L}_{2} \mathrm{~L}_{3}$ के लिये रेखाचित्र बनाइए। भार नीचे के कार्ड पर चल रहा है।

For the truss shown in fig. draw the influence lines for force in members $\mathrm{U}_{3} \mathrm{~L}_{3}, \mathrm{U}_{3} \mathrm{~L}_{2}$ and $L_{2} L_{3}$. The load moves on the bottom chord.

Downloaded From: http://iasexamportal.com

Q. $8(\mathrm{c})$ चित्र में दशायि गये ब्रैकेट कनेक्सन में ज्वाएस्ट कटिंग को कालम के पल्लैन्ज से शाप़ फिलेट वेल्डिंग द्वारा वेल्ड किया गया है। वेल्ड 8 mm फ्लैन्ज पर है और 6 mm web पर है। सेफ सर्विस लोड ' W ' निकालिये, इस्पात ग्रेड $=\mathrm{Fe} 410$ ब्रेकेट 200 mm दूरी पर सपोर्ट कर सकता है-कालम के फेस से। A bracket connection shown in figure, consists of a joist cutting welded to the flange of a column by shop fillet welds 8 mm on flanges and 6 mm on the web. Determine the safe service load 'W', the bracket can support at a distance of 200 mm from the face of the column if the steel grade is Fe 410.

शाप वेल्ड पर आंशिक सुरक्षा गुणक $=1.25$
इस्पात की पराभव क्षमता $=250 \mathrm{MPa}$
Partial factor of safety on shop weld $=1.25$
Yield strength of steel $=250 \mathrm{MPa}$

Study Kit For General Studies Mains

+ Medium: English
+ 100\% New Syllabus Covered (Paper 2, 34 \& 5)
+ Approx 2500+ Pages
+ Available in Hard Copy

What you will get:

- 100% G.S. Syllabus Covered
- 8+ Booklets
- More Than 2500+ Pages
- Guidance \& Support from Our Experts

Our Objectives:

- Firstly to cover 100% civil service Mains examination (IAS) syllabus.
- Secondly to compile all the required study materials in a single place, So to save the precious time of the aspirants.

General Studies Test Series

$\because P_{r,}$ For IAS Mains Exam
 3500 Question Papers (12 Mock Tests : PDF File) Evaluated Answer Booklet by experts with proper feedback, comments \& guidance.
 * Answer format (Synopsis) of Mock Test paper

For Any Query Call our Moderator at: +91 7827687693

General Studies Test Series for IAS Mains Examination

What you will get:

- Login id \& Password for online discussion
- Question Papers (12 Mock Tests : PDF File)
- Evaluated Answer Booklet by experts with proper feedback, comments \& guidance.
- Answer format (Synopsis) of Mock Test paper
- Comprehensive analysis of previous year questions \&
- Mode of Discussion: Email ,Telephonic and Online Discussion
- Value Addition material like
a. Current General Studies Magazine
b. Solved papers of General Studies Mains 2013
c. Categorised question papers of last ten years of General Studies Mains Exam
d. Trend Analysis

For More Information Click below Link

Online Coaching for General Studies - I, II, III \& IV
 (Combo)- IAS Mains

100 \% General Studies Syllabus Covered

* Expert Support and 'Ask Your Queries' Section
* Practice Tests to evaluate your performance
* Course Planning to ensure that you cover all the topics in time

For Any Query call our Course Co-ordinator -+91-7827687693, 8800734161

Online Coaching for IAS Mains General Studies

I, II, III \& IV (Combo)

What you will Get (?)

- General Studies (Paper - I, II, III \& IV) Online 100 \% Reading Material of the Syllabus (Which can be saved easily)
- Slides (For Giving Summary of Each Topics)
- Categorized Unit and Sub-Unit Wise Question Papers of General Studies
- Current General Studies Magazine (Indispensable Magazine for General Studies)
- Daily Answer Writing Challenge for IAS Mains Contemporary Issues
- It is full of tips on areas of emphasis, caution while reading and writing , how to write the answer (?) .
- Model Test Question Paper for General Studies - I, II, III and IV for Mains Exam 2015
- Online and Telephonic interaction with the course director, and continuous evaluation through a regular online writing session in every chapter and topic.

For More Information Click below Link

http://iasexamportal.com/civilservices/courses/ias-mains-gs-combo

