DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2010

Serial No.

CHEMISTRY Code No. 04

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC, IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A, B, C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- You, have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.
 Do NOT write anything else on the Test Booklet.

Your Roll No.	

- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

1.

main reason being:

(C) reduces permanganate to Mn²⁺

(A) CN⁻ and NO⁺

(C) O- and CN-

6.

(D) oxidises oxalic acid to carbon dioxide and water

Which one of the following pairs of species have the same bond order?

(B) CN⁻ and CN⁺

(D) NO⁺ and CN⁺

Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the

	(A)	4f orbitals more diffused than the 5f orbitals						
	(B)	lesser energy difference between 5f and 6d than between 4f and 5d orbitals						
	(C)	more energy difference be	more energy difference between 5f and 6d than between 4f and 5d orbitals					
	(D)	more reactive nature of the	e acti	noids than the lanthanoids				
2.	Whi	ch one of the following is the	ne co	rrect statement ?				
	(A)	Boric acid is a protonic ac	eid					
	(B)	Beryllium exhibits coordin	ation	number of six				
	(C)	Chlorides of both beryllium	m and	d aluminium have bridged chloride structures in solid phase				
	(D)	B ₂ H ₆ .2NH ₃ is known as 'i	norg	anic benzene'				
3.			silan	es the one which will give rise to cross linked silicone polymer				
		ydrolysis is :						
	(A)	R ₄ Si		RSiCl ₃				
	(C)	R ₂ SiCl ₂	(D)	R ₃ SiCl				
4.	In a	compound atoms of eleme	ent Y	from ccp lattice and those of element X occupy 2/3rd of				
		hedral voids. The formula o						
	(A)	$X_{4}Y_{3}$	(B)	X_2Y_3				
	(C)	X_2Y		X_3Y_4				
_								
5.				ution can be determined by its titration with KMnO ₄ solution				
		= :	ratio	n gives unsatisfactory result when carried out in the presence				
		Cl, because HCl:						
		gets oxidised by oxalic aci						
	(B)	furnishes H ⁺ ions in addition	on to	those from oxalic acid				

BKU-14141-A 3 [Turn over

- The IUPAC name for the complex [Co(NO₂) (NH₂)₅]Cl₂ is: 7.
 - (A) nitrito-N-pentaamminecobalt (III) chloride
 - (B) nitrito-N-pentaamminecobalt (II) chloride
 - (C) pentaammine nitrito-N-cobalt (II) chloride
 - (D) pentaammine nitrito-N-cobalt (III) chloride
- A metal, M forms chlorides in its +2 and +4 oxidation states. Which of the following statements 8. about these chlorides is correct?
 - (A) MCl₂ is more volatile than MCl₄
 - (B) MCl₂ is more soluble in anhydrous ethanol than MCl₄
 - (C) MCl₂ is more ionic than MCl₄
 - (D) MCl₂ is more easily hydrolysed than MCl₄
- 9. Which of the following statements is true?
 - (A) H₃PO₃ is a stronger acid than H₂SO₃
 - (B) In aqueous medium HF is a stronger acid than HCl
 - (C) HClO₄ is a weaker acid than HClO₃
 - (D) HNO₃ is a stronger acid than HNO₃
- 10. Which one of the following sets of ions represents a collection of isoelectronic species?

 - (A) K^+ , Cl^- , Ca^{2+} , Sc^{3+} (B) Ba^{2+} , Sr^{2+} , K^+ , S^{2-}

 - (C) N^{3-} , O^{2-} , F, S^{2-} (D) Li^+ , Na^+ , Mg^{2+} , Ca^{2+}
- 11. What products are expected from the disproportionation reaction of hypochlorous acid?
 - (A) HClO₃ and Cl₂O
- (B) HClO₂ and HClO₄
- (C) HCl and Cl₂O
- (D) HCl and HClO₃
- 12. In Fe(CO)₅, the Fe C bond possesses :
 - (A) p-character only
- (B) both s and p characters
- (C) ionic character
- (D) s-character only
- 13. Lanthanoid contraction is caused due to:
 - (A) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge
 - (B) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge
 - (C) the same effective nuclear charge from Ce to Lu
 - (D) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge

BKU-14141-A

14. Following statements regarding the periodic trends of chemical reactivity of the alkali metals and the halogens are given. Which of these statements gives the correct picture? (A) The reactivity decreases in the alkali metals but increases in the halogens with increase in atomic number down the group (B) In both the alkali metals and the halogens the chemical reactivity decreases with increase in atomic number down the group (C) Chemical reactivity increases with increase in atomic number down the group in both the alkali metals and halogens (D) In alkali metals the reactivity increases but in the halogens it decreases with increase in atomic number down the group 15. How many EDTA (ethylenediaminetetraacetic acid) molecules are required to make an octahedral complex with a Ca²⁺ion? (A) Six (B) Three (C) One (D) Two 16. Hydrogen bomb is based on the principle of: (A) Nuclear fission (B) Natural radioactivity (C) Nuclear fusion (D) Artificial radioactivity 17. An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be: (B) A₂B (A) AB (D) A₃B (C) AB_3 18. During the process of electrolytic refining of copper, some metals present as impurity settle as 'anode mud'. These are: (A) Sn and Ag (B) Pb and Zn (C) Ag and Au (D) Fe and Ni

19. The molecular shapes of SF_4 , CF_4 and XeF_4 are :

(A) the same with 2, 0 and 1 lone pairs of electrons on the central atom, respectively

(B) the same with 1, 1 and 1 lone pair of electrons on the central atoms, respectively

(C) different with 0, 1 and 2 lone pair of electrons on the central atoms, respectively

(D) different with 1,0 and 2 lone pairs of electron on the central atoms, respectively

BKU-14141-A 5 Turn over

20.	The	number and type of bonds between two	carb	on atoms in calcium carbide are
	(A)	One sigma, one pi	(B)	One sigma, two pi
	(C)	Two sigma, one pi	(D)	Two sigma, two pi
21.	The	number of hydrogen atom(s) attached to	o pho	sphorus atom in hypophosphorous acid is:
	(A)	zero	(B)	two
	(C)	one	(D)	three
22.	Whi	ch one of the following ions has the high	est va	alue of ionic radius ?
	(A)	Li ⁺	(B)	F^-
	(C)	O^{2-}	(D)	B^{3+}
23.	The	transition metal present in vitamin B_{12} is	:	
	(A)	Fe	(B)	Ni
	(C)	Co	(D)	Zn
24.	How	many electrons are involved in the oxid	dation	n by KMnO ₄ in basic medium?
	(A)	1	(B)	2
	(C)	3	(D)	5
25.	The	shape of XeF ₂ molecule is:		
	(A)	tetrahedral	(B)	pyramidal
	(C)	trigonal planar	(D)	linear
26.	Duri	ng the extraction of Fe, slag obtained is	:	
	(A)	FeO	(B)	FeSiO ₃
	(C)	${\rm MgSiO_3}$	(D)	CaSiO ₃
27.	The	lightest particle is:		
	(A)	electron	(B)	proton
	(C)	neutron	(D)	α -particle
28.	Whi	ch of the following elements does not ex	hibit	allotropy?
	(A)	Arsenic	(B)	Tin
	(C)	Silicon	(D)	Bromine

29.	Which one of the following pairs of elements does not illustrate the diagonal relationship in the Periodic Table ?			
	(A)	Li and Na	(B)	Li and Mg
		Be and Al		B and Si
30.	Nitri	ic acid converts iodine into:		
	(A)	hydriodic acid	(B)	iodic acid
	(C)	hypoiodous acid	(D)	ammonium iodine
31.	Whi	ch of the following molecules has higher	st dipo	ole moment?
	(A)	H_2S	(B)	CO_2
	(C)	CCl ₄	(D)	BF_3
32.	Ferr	ocene cannot undergo:		
	(A)	Friedel-Crafts acylation	(B)	Diels-Alder reaction
	(C)	oxidation by Ag+ion	(D)	electrophilic reaction
33.	B ₁₀ C	C_2H_{12} is isoelectronic with:		
	(A)	$B_{12}H_{12}^{2-}$	(B)	$B_{12}H_{12}$
	(C)	$B_{12}H_{12}^{+}$	(D)	$B_{12}H_{12}^{2+}$
34.	Whi	ch of the following does not have a met	al-me	tal bond ?
	(A)	$K_2Re_2Cl_2$	(B)	$\operatorname{Mn_2(CO)}_{10}$
	(C)	Hg_2Cl_2	(D)	Al_2Cl_6
35.	Onh	neating, zinc oxide becomes yellow and	on co	ooling, becomes white. This shows that it is:
	(A)	an oxidizing agent	(B)	a reducing agent
	(C)	a Lewis acid	(D)	non-stoichiometric
36.	The	conjugate base of H ₃ O+is:		
	(A)	H^{+}	(B)	H_2O
	(C)	H_2O_2	(D)	OH
37.	Ofth	ne following isotopes, the one that is no	t radio	
	(A)	$^{132}\mathrm{I}$	(B)	$^{131}\mathrm{I}$
	(C)	⁴⁰ Ca	(D)	⁹⁰ Sr

38.	Whi	ch of the following is a soft base?		
	(A)	CH ₃ COO ⁻	(B)	H^-
	(C)	NO^{3-}	(D)	CO ₃ ²⁻
39.		ch of the following products is obtaine perature?	d on l	heating, B_2H_6 with NH_3 in ratio 1:3 at higher
	(A)	$B_3N_3H_3$	(B)	$B_2H_6.2NH_3$
	(C)	Boron nitride	(D)	$B_3N_3H_6$
40.		product obtained by successive emis	sion (of an alpha particle and a beta particle from
	(A)	radium	(B)	thorium
	(C)	lead	(D)	protactinium
41.	Read	ction of trans-2-phenyl-1-bromocyclop	entan	e with alcoholic KOH produces:
	(A)	4-phenylcyclopentene	(B)	2-phenylcyclopentene
	(C)	1-phenylcyclopentene	(D)	3-phenylcyclopentene
42.		easing order of stability among the three toroethanol is:	mair	n conformations (i.e. Eclipse, Anti, Gauche) of
	(A)	Eclipse, Gauche, Anti	(B)	Gauche, Eclipse, Anti
	(C)	Eclipse, Anti, Gauche	(D)	Anti, Gauche, Eclipse
43.	Whi	ch of the following is a polyamide?		
	(A)	Teflon	(B)	Nylon-66
	(C)	Terylene	(D)	Bakelite
44.	Whi	ch one of the following types of drugs re	educe	es fever?
	(A)	Analgesic	(B)	Antipyretic
	(C)	Antibiotic	(D)	Tranquiliser
45.	Due	to the presence of an unpaired electron	, free	radicals are :
	(A)	Chemically reactive	(B)	Chemically inactive
	(C)	Anions	(D)	Cations

16	2 m	athylloutana on reacting with broming in	tha n	resonan of suplicht gives mainly.
ю.		ethylbutane on reacting with bromine in	_	
		1– bromo-2- methylbutane	` '	2– bromo-2- methylbutane
	(C)	2– bromo-3- methylbutane	(D)	1 – bromo-3 - methylbutane
ŀ7.	Terti	ary alkyl halides are practically inert to	substi	tution by SN ² mechanism because of:
	(A)	insolubility	(B)	instability
	(C)	inductive effect	(D)	steric hindrance
18.		ction of one molecule of HBr with one ominantly:	e mole	ecule of 1, 3-butadiene at 40 Degree C gives
	(A)	3-bromobutene under kinetically contr	olled	conditions
	(B)	1-bromo-2-butene under thermodynan	nicall	y controlled conditions
	(C)	3-bromobutene under thermodynamics	ally co	ontrolled conditions
	(D)	1-bromo-2-butene under kinetically co	ntroll	led conditions
19.	Amo	ong the following acids which has the lo	west 1	oKa value ?
		CH ₃ COOH	-	НСООН
		(CH ₃) ₂ COOH	. ,	CH ₃ CH ₂ COOH
50.	Fehl	ing's solution and Benedict's solutions	are rec	duced by glucose to form :
•		CuO		Cu ₂ O
	` ′	Cu(OH) ₂		Cu(CO) ₄
- 1	****	1 64 6 11 1 1 6 11 61 1 1	1	o.
01.		ch of the following is fully fluorinated po	-	
		Neoprene		
	(C)	Thiokol	(D)	PVC
52.	Two	moles of acetone under the influence of	sodiu	ım hydroxide will yield :
	(A)	4-methyl-2-pentanone	(B)	4-hydroxy-2-pentanol
	(C)	4-methyl-2-pentanoic acid	(D)	4-hydroxy-4-methyl-2-pentanone
53.	Whi	ch of the following bonds would show t	he str	ongest absorption in the IR ?
	(A)	carbon-hydrogen	(B)	oxygen-hydrogen
	(C)	nitrogen-hydrogen	(D)	sulfur-hydrogen

BKU-14141-A 9

[Turn over

54.	Alkyl halides react with dialkyl copper reagents to give:					
	(A)	alkenes	(B)	alkyl copper halides		
	(C)	alkanes	(D)	alkenyl halides		
55	A m	ongst the following the most begin comm	sound	ia.		
55.		ongst the following the most basic comp				
	(A)	benzylamine	(B)	aniline		
	(C)	acetanilide	(D)	p-nitroaniline		
56.	Whi	ch types of isomerism is shown by 2, 3-	dichle	orobutane ?		
	(A)	Diastereo	(B)	Optical		
	(C)	Geometric	(D)	Structural		
57.	In a	low resolution NMR spectrum of etha	nol, tl	he area under the peak corresponding to OH,		
		and CH ₃ protons respectively will be in				
	_	1:2:3		3:2:1		
	(C)	1:3:2	(D)	3:1:2		
58.	In "r	nitration mixture" concentrated sulphuri	e acid	is used as:		
50.		sulphonating agent	(B)			
	(C)	for the formation of nitronium ions	` '	for the formation of nitrate ions		
	(C)	for the formation of introductin folis	(D)	for the formation of mutae ions		
59.	The	pyrimidine bases present in DNA are:				
	(A)	cytosine and adenine	(B)	cytosine and guanine		
	(C)	cytosine and thymine	(D)	cytosine and uracil		
60.	The	term anomers of glucose refers to:				
	(A)	•	urati	ons at carbons one and four (C-1 and C-4)		
	(B)	a mixture of (D)-glucose and (L)-gluco		,		
	(C)	enantiomers of glucose				
	(D)	isomers of glucose that differ in config	guratio	on at carbon one (C-1)		
61.	Pher	nyl magnesium bromide reacts with metl	nanol -	to give:		
01.	(A)	a mixture of anisole and Mg(OH)Br	(B)	a mixture of benzene and Mg(OMe)Br		
	(A) (C)	a mixture of toluene and Mg(OH)Br	(D)	a mixture of phenol and Mg(Me)Br		
	(0)	a minute of totache and mg(OH)DI	(D)	a minimic of phonor and mg(Mc)Di		

62.	The	number of unshared electrons on the ca	rbene	e carbon is:
	(A)	1	(B)	2
	(C)	3	(D)	4
63.	The	simplest amino acid is:		
	(A)	cystine	(B)	alanine
	(C)	glycine	(D)	hoistidine
64.	Acio	l anhydrides add to aromatic aldehydes	in the	e presence of a base yield:
	(A)	α , β - unsaturated acids	(B)	esters
	(C)	β , γ -unsaturated acids	(D)	alcohols
65.	Tran	sition between the excited singlet and tr	iplet	states are :
	(A)	spin allowed	(B)	spin forbidden
	(C)	very frequent	(D)	not observed
66.		stability of the cycloalkanes, as shown lytic hydrogenation, is least for which of	•	e temperature at which the rings are broken by ollowing?
	(A)	Cyclopropane	(B)	Cyclobutane
	(C)	Cyclopentane	(D)	Cyclohexane
67.		reactive intermediate involved in the consodium hydroxide:	versio	n of phenol to salicylaldehyde using chloroform
	(A)	Cl,C:	(B)	Cl ₂ CH ⁺
	(C)	Cl ₂ CH ⁻	(D)	Cl_2C^+
68.	Wol	f-Kishner reduction is applied to one of t	he fol	llowing functional groups :
	(A)	>C=O	(B)	>C=C<
	(C)	–C≡C–	(D)	–C≡N
69.	The	number of ¹ H NMR spectrum 3, 5-dib	romot	toluene is :
	(A)	_	(B)	
	(C)		(D)	

70.	Amo	ong the following the strongest electroph	ile is:	
	(A)	NO^+	(B)	NO^{2+}
	(C)	RN^{2+}	(D)	H_3O^+
71.	The	heterocyclic compound, which exhibits	tautor	merism, is:
	(A)	pyrazole	(B)	indole
	(C)	pyrrole	(D)	thiophen
72.	The	enzyme, which acts on starch, is:		
	(A)	amylase	(B)	esterase
	(C)	protease	(D)	urease
73.	Whi	ch of the following is least reactive towa	ards bi	romine?
	(A)	anisole	(B)	chlorobenzene
	(C)	nitrobenzene	(D)	phenol
74.	Ram	nan spectrum is due to:		
	(A)	absorption of energy by molecules	(B)	emission energy by molecules
	(C)	inelastic collisions	(D)	absorption and re-emission
75.	The	Markovnikoff Rule is used in connection	on wit	h:
	(A)	stereochemistry of elimination reaction	IS	
	(B)	stability of free radicals		
	(C)	activity of enzymes		
	(D)	addition of acids to double bonds		
76.	Tod	etect gas leakage from cylinders the su	bstan	ce added to LPG is :
	(A)	Phenols	(B)	Thioalcohols
	(C)	Glycols	(D)	Glycine
77.	In th	e Fischer projection formula, meso-2, 3	R-huta	nedial is in ·
, , .	(A)	a staggered conformation	(B)	an eclipsed conformation
	` ′		` /	•
	(C)	a gauche conformation	(D)	an anticlinal conformation

78.	Esse	ntial oils are :		
	(A)	Mixtures of various hydrocarbons	(B)	Mixtures of higher fatty acids
	(C)	Mixtures of aldehydes	(D)	Pleasant smelling liquids occurring in plants
79.	Whi	ch of the following is not glycerides?		
	(A)	Fat	(B)	Phospholipid
	(C)	Soaps	(D)	Oils
80.	Prote	eins do not respond to :		
	(A)	Lucas test	(B)	Biuret test
	(C)	Ninhydrin test	(D)	Haller's ring test
0.1			.1	
81.				pect to the concentration of carbon monoxide.
		e concentration of carbon monoxide is c action will :	louble	ed, with everything else kept the same, the rate
		remain unchanged	(B)	triple
	` '	increase by a factor of 4	(D)	double
	(0)	increase by a factor of t	(D)	double
82.	In La	angmuir's model of adsorption of a gas	on a s	olid surface:
	(A)	the rate of dissociation of adsorbed number surface covered	nolec	ules from the surface does not depend on the
	(B)	the adsorption at a single site on the surf	ace m	nay involve multiple molecules at the same time
	(C)	the mass of gas striking a given area o	f surfa	ace is proportional to the pressure of the gas
	(D)	the mass of gas striking a given area of	f surfa	ace is independent of the pressure of the gas
83.	Rate	of a reaction can be expressed by Arrh	enius	equation as:
		$Ae^{-E/RT}$ (where E/RT is read as power of		-
	(A)	the energy above which all the colliding	,	
	(B)	the energy below which colliding mole		
	(C)	the total energy of the reacting molecu		
	(D)			r than the activation energy of the reaction
0.4	_			
84.		·		er is 1.02 g/mL. The molality of the solution is:
	(A)	1.14 mol kg ⁻¹	(B)	3.28 mol kg ⁻¹
	(C)	$2.28 \mathrm{mol}\mathrm{kg}^{-1}$	(D)	$0.44~\mathrm{mol}~\mathrm{kg}^{-1}$

	0 12 0	1 /8.2 g 01	water. The vapour pressure of water for this					
(A)	759.00 Torr	(B)	7.60 Torr					
(C)	76.00 Torr	(D)	752.40 Torr					
		SO ₄ , the V	Vant Hoff's factor (i) used for calculating the					
		(B)	1 a					
` ′		` '	1-a $1-2a$					
on th	ne distribution of molecular speeds	in a gas?	e about the effect of an increase in temperature					
` ′			probable speed increases					
` ′								
(D)	The area under the distribution cu	rve remaii	ns the same as under the lower temperature					
Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution + 520 mL of 1.2 M second solution. What is the molarity of the final mixture?								
` ′		` ′	2.70 M					
A re	A reaction involving two different reactants can never be:							
	•	(B)						
(C)	Second order reaction	(D)	Bimolecular reaction					
	1 1	•						
(A)	magnesium chloride solution coagusol.	ılates, the g	old sol more readily than the iron (III) hydroxide					
(B)	sodium sulphate solution causes c	oagulation	in both sols					
(C)								
(D)	coagulation in both sols can be br	ought abo	ut by electrophoresis					
Fora	an isochoric process:							
(A)	Volume is constant	(B)	Pressure is constant					
(C)	Internal energy is constant	(D)	Temperature is constant					
J -141	41-A		14					
	aque (A) (C) If a i mole (A) (C) Whi on th (A) (B) (C) (D) Two 1.5 M (C) A re (A) (C) The char (A) (C) For a (A) (C)	aqueous solution at 100°C is: (A) 759.00 Torr (C) 76.00 Torr If a is the degree of dissociation of Namolecular mass is: (A) 1 + a (C) 1 + 2a Which one of the following statements is on the distribution of molecular speeds (A) The most probable speed increas (B) The fraction of the molecules with (C) The distribution becomes broader (D) The area under the distribution cut Two solutions of a substance (non elect 1.5 M first solution + 520 mL of 1.2 M sect (A) 1.20 M (C) 1.344 M A reaction involving two different react (A) Unimolecular reaction (C) Second order reaction The disperse phase in colloidal iron (III) charged, respectively, which of the follow (A) magnesium chloride solution coagus sol. (B) sodium sulphate solution causes compared to the solution in both sols can be broader. For an isochoric process: (A) Volume is constant	(A) 759.00 Torr (D) If a is the degree of dissociation of Na ₂ SO ₄ , the Molecular mass is: (A) 1 + a (B) (C) 1 + 2a (D) Which one of the following statements is NOT true on the distribution of molecular speeds in a gas? (A) The most probable speed increases (B) The fraction of the molecules with the most (C) The distribution becomes broader (D) The area under the distribution curve remains. Two solutions of a substance (non electrolyte) at 1.5 M first solution + 520 mL of 1.2 M second solution (A) 1.20 M (C) 1.344 M (D) A reaction involving two different reactants can make (A) Unimolecular reaction (B) (C) Second order reaction (D) The disperse phase in colloidal iron (III) hydroxide charged, respectively, which of the following state (A) magnesium chloride solution coagulates, the ground solution solution causes coagulation (C) mixing the sols has no effect (D) coagulation in both sols can be brought about the form is sochoric process: (A) Volume is constant (B) (C) Internal energy is constant (D)					

92.	The protective colloid can convert:					
	(A)	Irreversible colloid into a reversible col	lloid			
	(B)	Reversible colloid into irreversible collo	oid			
	(C)	Lyophobic colloid into lyophilic colloid	l			
	(D)	Lyophilic colloid into lyophobic colloid	[
93.	Whi	ch is readily adsorbed by activated char	coal '	?		
	(A)	Cl_2	(B)	CO_2		
	(C)	H_2	(D)	SO_2		
94.	Adso	orption plays an important role in:				
	(A)	Heterogeneous catalysis	(B)	Homogeneous catalysis		
	(C)	Positive catalysts	(D)	Negative catalysts		
95.	LeC	hatelier principle is applicable only to:				
	(A)	Homogeneous reaction	(B)	Heterogeneous reaction		
	(C)	Systems in equilibrium	(D)	Systems not in equilibrium		
96.	Fora	a zero order reaction, the plot of concen-	tratio	n vs time is linear with:		
	(A)	Positive slope and zero intercept	(B)	Negative slope and zero intercept		
	(C)	Positive slope and non-zero intercept	(D)	Negative slope and non-zero intercept		
97.	The	approximate voltage of dry cell is:				
	(A)	2.0 V	(B)	1.2 V		
	(C)	6.0 V	(D)	1.5 V		
98.	Duri	ng an isothermal expansion of an ideal g	gas, its	S:		
	(A)	Internal energy increases	(B)	Enthalpy decreases		
	(C)	Enthalpy remains unaffected	(D)	None		
99.	Whi	ch law of thermodynamics introduce the	e cond	cept of entropy?		
	(A)	First law	(B)	Second law		
	(C)	Zeroth law	(D)	Third law		
100.	Abu	ffer solution of sodium acetate and acet	ic aci	d is diluted with water. Its pH will:		
	(A)	Increase	(B)	Decrease		
	(C)	Remains same	(D)	None		

BKU-14141-A 15 [Turn over

101.	Indicator used in the titration of KMnO ₄ against Fe ²⁺ ion is:						
	(A)	Methyl red	(B)	Selfindicator			
	(C)	Phenolphthalein	(D)	Methyl orange			
102.	Whi	Which of the following is used as contact catalyst?					
	(A)	Nickel	(B)	Germanium			
	(C)	Boron	(D)	Uranium			
103.	. The kinetics of enzyme catalyst was suggested by :						
	(A)	Henery	(B)	Briggs			
	(C)	Langmuir	(D)	Ostwald			
104.	Electrochemical equivalent of a substance is 0.0006735. Its equivalent weight is:						
	(A)	65	(B)	67.35			
	(C)	130	(D)	260			
40=	2 5111						
105.		Milk is an example of:					
	(A)	Emulsion	(B)	Suspension			
	(C)	Gel	(D)	True solution			
106.	6. Which of the following is not a colligative property?						
	(A)	Lowering of vapour pressure	(B)	Elevation of boiling point			
	(C)	Boiling point	(D)	Depression of freezing point			
107	In on	n ideal gas, Joule-Thomson effect is:					
107.		Positive	(B)	Negative			
	` ′	Infinite	` /	Zero			
	(C)	nunc	(D)	2210			
108.	Whi	Thich of the following gas would have highest root mean square (RMS) velocity at 25°C?					
	(A)	CO	(B)	CO_2			
	(C)	SO_2	(D)	O_2			
109.	The	ne highest number of molecules are in :					
	(A)	$2 g of H_2$	(B)	$2 g \text{ of } N_2$			
		$16 \mathrm{g} \mathrm{of} \mathrm{O}_2$		16 g of CO ₂			
		-		-			

110.	Gold number indicates:							
	(A)	Protective action of lyophilic colloid	(B)	Protective action of lyophobic colloid				
	(C)	Amount of gold in a given solution	(D)	Charge on gold solution				
111.	Total no of variables defining a system of C components with P phases is:							
	(A)	C(P-1)	(B)	3				
	(C)	C + P + 2	(D)	C-P+2				
112.	The collision theory is satisfactory for reactions:							
	(A)	zero order	(B)	unimolecular				
	(C)	bimolecular	(D)	any order				
113.	The	inversion temperature (T_i) for a van der	·Waa	ls gas is equal to :				
	(A)	2a/Rb	(B)	a/2Rb				
	(C)	a/Rb	(D)	ab/2R				
114.	The units of the rate and rate constant are the same for reaction of order:							
	(A)	0	(B)	1				
	(C)	1/2	(D)	2				
115.	At the boiling point of an azeotropic mixture, the number of degrees of freedom is:							
	(A)	zero	(B)	1 at constant pressure				
	(C)	zero at constant pressure	(D)	two				
116.	The Onsager equation helps us to find out:							
	(A) dissociation constant of a weak electrolyte							
	(B)	λ_0 for a weak electrolyte						
	(C)	transport number of an ion						
	(D)	λ_0 of a strong electrolyte						
117.	The triple point for water is:							
	(A)	unique	(B)	depends on p but is independent of T				
	(C)	depends on T but is independent of p	(D)	depends on p and T				

118.	. Catalyst used for the hydrogenation of vegetable oils is:				
	(A)	Cu	(B)	Finely divided Ni	
	(C)	Al_2O_3	(D)	Pt-black	
119.	9. The free energy $\Delta G = 0$, when:				
	(A)	The system at equilibrium	(B)	Catalyst is added	
	(C)	Reactants are initially mixed thoroughly	(D)	Reactants are completely consumed	
100	50 0/		1		
120.	 50% of the amount of a radioactive substance decomposes in 5 years. The time required for the decomposit of 99.9% of the substance will be: 				
	(A)	10 years	(B)	25 years	
	(C)	75 years	(D)	50 years	

ROUGH WORK

ROUGH WORK