DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2012

Serial No.

CHEMISTRY Code No. 04

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A, B, C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- You have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.

 DO NOT write anything else on the Test Booklet.

Your Roll No.	

- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

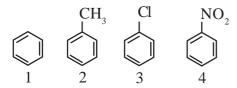
DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

TDC-41587-A

2

1.	The	The presence of three unpaired electrons in the nitrogen atom can be explained by:						
	(A)	the Pauli exclusion principle	(B)	the Aufbau principle				
	(C)	the Hund rule	(D)	the Heisenberg uncertainty principl	e			
2.	The	orbital with zero angular momentum is	s:					
	(A)	S	(B)	p				
	(C)	d	(D)	f				
3.	Whi	ch of the following pairs have the ident	ical ele	ctronic configurations?	in principle berg uncertainty principle figurations? Cr ³⁺ 2+ Al < Cl O < Al e order: D > F			
	(A)	Se ²⁻ and Kr	(B)	Mn^{2+} and Cr^{3+}				
	(C)	Na ⁺ and Cl ⁻	(D)	Ni and Zn^{2+}				
4.	Whi	ch of the following has largest radius?						
	(A)	O^{2-}	(B)	Mg^{2+}				
	(C)	Na ⁺	(D)	F-				
5.	Incre	easing order of electron affinity is:			ciple			
	(A)	N < O < Cl < Al	(B)	O < N < Al < Cl				
	(C)	Al < N < O < Cl	(D)	Cl < N < O < Al				
6.	In go	oing from left to right in a period :						
	(A)	the basic nature of the oxides increas	ses					
	(B)	acidic nature of oxides decreases						
	(C)	the basic nature of the oxides decrea	ses					
	(D)	no gradation in the nature of oxides i	s obser	ved				
7.	The first ionization potential of the following elements is in the order:							
	(A)	C < N < O < F	(B)	C > N > O > F				
	(C)	C < N > O < F	(D)	C < N > O > F				
8.	Whi	ch one of the following ion is paramag	netic?					
	(A)	Mg^{2+}	(B)	Fe^{2+}				
	(C)	Cu ⁺	(D)	Sc^{3+}				
TD	C-415	587-A	3		[Turn over			


9.	The ratio of the radius of the nuclides He_2^4 and H_1^1 is:			
	(A)	4	(B)	2
	(C)	3	(D)	1.6
10.	The	missing fission product in the reaction		
		$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{146}_{57}\text{La} + \dots + 3(^{1}_{0}\text{n})$	is:	
	(A)	⁸⁶ ₃₅ Br	(B)	⁸⁷ ₃₅ Br
	(C)	⁸⁷ ₃₂ Ge	(D)	⁸⁹ ₃₅ Br
11.	Whi		the dia	gnosis and treatment of thyroid-gland-related
	(A)	^{127}I	(B)	¹³¹ I
	(C)		(D)	$^{138}\mathrm{I}$
12.	fragi	atom of $^{298}\text{U}_{92}$, after the adsorption of ments $^{139}\text{Xe}_{54}$ and $^{94}\text{Sr}_{38}$. What other particles	article	ow neutron, undergoes fission to form two s produced? Beta particles
	(C)	Neutron	(D)	Positron
	` ′		` /	
13.	In nu	nclear reactor, chain reaction is controlle	ed by i	ntroducing:
	(A)	Cd rod	(B)	Fe rod
	(C)	Pt rod	(D)	Graphite rod
14.	Whi	ch of the following hybrid orbitals has the	he higl	nest value of electronegativity?
	(A)	sp^3	(B)	sp^2
	(C)	sp	(D)	dsp^2
15.	Whi	ch molecule has zero dipole moment?		
	(A)	CH_2Cl_2	(B)	BF_3
	(C)	NF ₃	(D)	ClO ₂
16.	The	molecule that has linear structure is:		
	(A)	CO_2	(B)	NO_2
	(C)	SO_2	(D)	H_2O
TDC	7 /15	97 A		
IDC	C-415	0/-A	4	

17.	According to molecular orbital theory which of the following statements with respect to magnetic character and bond order is correct regarding O_2^+ ?						
			-	•			
		Paramagnetic and bond order < O ₂		-			
	(C)	Paramagnetic and bond order $> O_2$	(D)	Diamagnetic and bond order $> O_2$			
18.		correct order of hybridization of the cer 5, BCl ₃ :	ntral at	tom in the following molecule, NH ₃ , [Pt Cl ₄] ²⁻ ,			
		sp ³ , dsp ² , dsp ³ , sp ³	(B)	sp ³ , dsp ² , dsp ³ , sp ²			
		sp^2 , sp^3 , d^2sp^2 , sp^3	(D)	sp ³ , d ² sp ³ , dsp ³ , sp ²			
19.	Whi	ch is the correct order of increasing acid	dity?				
	(A)	$H_{3}PO_{2} < H_{3}PO_{3} < H_{3}PO_{4}$	(B)	HClO ₂ < HClO ₃ < HClO ₄			
		HI < HBr < HCl < HF		$HF < H_2O < NH_3 < CH_4$			
20.	The	main function of roasting is:					
	(A)	to remove the volatile impurities	(B)	to oxidize the metal			
	(C)	to reduce the metal oxide	(D)	to make a slag			
21.	Whi	ch of the following is the thermite reacti	on?				
	(A)	$MgCO_3 + SiO_2 \rightarrow MgSiO_3 + CO_2$	(B)	$\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2$			
	(C)	$3Mn_3O_4 + 8Al \rightarrow 9Mn + 4Al_2O_3$	(D)	$2\text{PbO} + \text{PbS} \rightarrow 3\text{Pb} + \text{SO}_2$			
22.	Mor	nd's process is used to extract:					
	(A)	Fe	(B)	Co			
	(C)	Ni	(D)	Pt			
23.	In th	In the electrochemical process for Al extraction, the electrolyte used is:					
	(A)	(A) Al(OH) ₃ in NaOH solution					
	(B)	(B) a molten mixture of Al ₂ O ₃ , Na ₃ AlF ₆ and CaF ₂					
	(C)	a molten mixture of Al ₂ (SO ₄) ₃ and Ale	$(OH)_3$				
	(D)	a molten mixture of Al_2O_3 , $Al_2(SO_4)_3$					
24.	Whi	Which of the following is used as a moderator in nuclear reactor?					
	(A)	Hard water	(B)	Heavy water			
	(C)	Deuterium	(D)	Deionized water			
TD	C-415	587-A	(5)	[Turn over			

25.	Whi	Which of the metal ion is present in the haemoglobin, an oxygen carrier in the human body?					
	(A)	Mg^{2+}	(B)	Fe^{3+}			
	(C)	Cu^{2+}	(D)	Fe^{2+}			
26.		ich of the following complex is used gnant tumours?	as an a	anti-cancer drug for treating several types of			
	(A)	cis - [Pt (NH ₃) ₂ Cl ₂]	(B)	trans - $[Pt (NH_3)_2 Cl_2]$			
	(C)	cis - $[Pt (NH_3)_4 Cl_2]^{2+}$	(D)	trans - [Pt $(NH_3)_2 Cl_2$] trans - [Pt $(NH_3)_4 Cl_2$] ²⁺			
27.	due			gent (A) which develops a red colour with Fe^{3+} gent (A) and the product (B) are, respectively:			
	(B)	NH ₄ CNS and K ₃ [Fe(SCN) ₆]					
	(C)	8-hydroxy-quinoline (oxime) and [Fe	e(oxime	e) ₃]			
	(D)	Na ₂ HPO ₄ and FePO ₄					
28.	K ₂ [F	HgI_4] is useful for detecting:					
	(A)	NO_3^-	(B)	PO_4^{3-}			
	(C)	Cl-	(D)	NH_4^+			
29.	_	ualitative group analysis, group IV me mixture by treating the solution with :	etal ions	s can be precipitated out from the solution of a			
	(A)	H ₂ S in HCl medium	(B)	H ₂ S in NH ₃ medium			
	(C)	NH ₄ Cl and NH ₃		(NH ₄) ₂ CO ₃ in NH ₃ medium			
30.	In th	ne brown-ring test for the nitrate ion, the	ne brow	on ring appears due to the formation of:			
	(A)	FeSO ₄ ·NO	(B)	$[Fe(H_2O)_5NO]^+$			
	(C)	[Fe(H2O)5NO]2+	(D)	$[\mathrm{Fe}(\mathrm{H_2O})_5\mathrm{NO}]^{3+}$			
31.	Both geometrical and optical isomerisms are shown by:						
	(A)	$[\text{Co(en)}_2\text{Cl}_2]^+$	(B)	$[\text{Co(NH}_3)_4\text{Cl}_2]^+$			
	(C)	$[\operatorname{Co(en)}_{3}]^{3+}$	(D)	$[\operatorname{Co(NH}_3)_5\operatorname{Cl}]^{2+}$			
32.	One			gives 3 moles of ions on dissolution in water. noles of AgNO ₃ solution to yield two moles of			
	(A)	$[\mathrm{Co(NH}_3)_3\mathrm{Cl}_3]2\mathrm{NH}_3$	(B)	$[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2$			
	(C)	$[\operatorname{Co(NH}_3)_4\operatorname{Cl}_2]\operatorname{Cl}\cdot\operatorname{NH}_3$	(D)	$[\text{Co(NH}_3)_4\text{Cl}] \text{ Cl}_2 \cdot \text{NH}_3$			
TD(C-415	87-A	(6)				

33.	The	EAN of cobalt in the complex ion [Co(en) ₂ C	l ₂]+ is:	
	(A)	27	(B)	33	
	(C)	24	(D)	36	
34.	In st is:	andardization of Na ₂ S ₂ O ₃ using K ₂ Cr ₂ O	O ₇ by	iodometry, the equivalent weight of K ₂ C ₁	r_2O_7
	(A)	molecular weight of $K_2Cr_2O_7/2$	(B)	molecular weight of K ₂ Cr ₂ O ₇ /3	
	(C)	molecular weight of K ₂ Cr ₂ O ₇ /6	(D)	same as molecular weight of K ₂ Cr ₂ O ₇	
35.	The	oxidation number of sulphur in S ₈ , SO ₂	$_{2}$, $S_{2}F_{2}$	and H ₂ S respectively are:	
	(A)	0, +4, +1, -2	(B)	0, +2, +2, +2	
	(C)	+1, +4, -2, +2	(D)	0, +4, -2, +2	
36.	Whi	ch of the following shows paramagnetis	m?		
	(A)	N_2	(B)	O_2	
	(C)	F_2	(D)	Zn^{2+}	
37.	Zr aı	nd Hf have almost equal atomic and ion	ic rad	ii because of :	
	(A)	diagonal relationship	(B)	lanthanide contraction	
	(C)	actinide contraction	(D)	same period	
38.	The	hybridization of Xe in XeF ₂ is:			
	(A)	sp^3	(B)	sp	
	(C)	sp ³ d	(D)	sp^2	
39.	Whi	ch compound acts as an oxidising as we	ell as r	educing agent?	
		MnO_2		CrO_3	
	(C)	Al_2O_3	(D)	SO_2	
40.	The	correct order of magnetic moments is:			
	(A)	$[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$			
		$[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$			
		$[Fe(CN)_6]^4 > [CoCl_4]^2 > [MnCl_4]^2$			
	(D)	$[Fe(CN)_6]^4 > [MnCl_4]^2 > [CoCl_4]^2$			
41.	The alkyne which will react with KMnO ₄ to give pyruvic acid:				
	(A)	Ethyne	(B)	Propyne	
	(C)	Butyne	(D)	2-Pentyne	
TD	C-415	587-A	7	[Turn c	over

42. Arrange the following in the decreasing order of reactivity in electrophilic substition reactions:

(A) 1 > 2 > 3 > 4

(B) 2 > 1 > 3 > 4

(C) 3 > 4 > 1 > 2

(D) 2 > 3 > 1 > 4

43. Which of the following has been arranaged in order of decreasing stability?

- (A) $CH_3^+ > CH_3 CH_2^+ > (CH_3)_2CH^+ > (CH_3)_3C^+$
- (B) $(CH_3)_3C^+ > (CH_3)_2CH^+ > CH_3 CH_2^+ > CH_3^+$
- (C) $(CH_3)_2CH^+ > CH_3 CH_2^+ > CH_3^+ > (CH_3)_3C^+$
- (D) $CH_3 CH_2^+ > (CH_3)_2CH^+ > CH_3^+ > (CH_3)_3C^+$

44. Arrange the following acids in the decreasing order of acidity (I) CH₃COOH (II) FCH₂COOH

- (III) ClCH $_2$ COOH (IV) BrCH $_2$ COOH :
- (A) I > II > III > IV

(B) II > III > I > IV

(C) II > III > IV > I

(D) IV > III > II > I

45. During the reaction

$$CH_3CONH_2 \xrightarrow{P_2O_5} CH_3CN$$

The hybridization state of carbon changes from:

(A) $sp^3 to sp$

(B) $sp^3 to sp^2$

(C) $sp^2 to sp^3$

(D) $sp^2 to sp$

46. Which of the following is not a nucleophile?

(A) CN^-

(B) OH-

(C) NH₃

(D) BF₃

47. The reaction, $H_2C = CH_2 + H_2 \xrightarrow{\text{Ni}} CH_3 - CH_3$ is called:

(A) Wurtz reaction

- (B) Kolbe's synthesis
- (C) Wulf-Kishner reduction
- (D) Sabatier and Senderen's reaction

- 48. In the presence of a peroxide, which of the following hydrogen halide undergoes addition reaction with propene in an anti-Markovnikov fashion?
 - (A) HF

(B) HCl

(C) HBr

- (D) HI
- 49. But-2-yne is allowed to react with H₂ in the presence of Lindlar catalyst. The major product formed is:
 - (A) cis-but-2-ene

(B) trans-but-2-ene

(C) butane

- (D) mixture of cis and trans but-2-ene
- 50. 2-Bromopentane on heating with sodium ethoxide in ethanol gives the following major product:
 - (A) pent-1-ene

(B) cis-pent-2-ene

(C) trans-pent-2-ene

- (D) mixture of cis and trans-pent-2-ene
- 51. Trans-but-2-ene + Br_2 gives:
 - $\begin{array}{c|c} \text{(A)} & & \text{CH}_3 \\ & \text{H} & & \\ & \text{H} & & \\ & & \text{Br} \\ & & \text{CH}_3 \end{array}$
- (B) CH_3 Br Br CH_4 CH_5
- (C) CH_3 Br H H CH_2
- (D) CH_3 CH_3 H H Br H Br H Br CH_3
- 52. Which of the following is the most stable alkene?
 - (A) $R_2C = CR_2$

(B) $R_2C = CHR$

(C) $R - CH = CH_2$

(D) $H_2C = CH_2$

TDC-41587-A

(9)

53.		increasing order of reactivity of halides ride (III) in SN¹ reactions is:	, ethy	l chloride (I), isopropyl chloride (II), ter-butyl		
	(A)	I < III < II	(B)	I < II < III		
	(C)	I > II > III	(D)	I > III > I		
54.	Whi	ch of the following reagents can conver	t aceti	ic acid into ethanol?		
	(A)	Sn + HCl	(B)	$H_2 + Pt$		
	(C)	LiAlH ₄ + ether	(D)	$H_2 + Ni$		
55.				cidified $K_2Cr_2O_7$. The product obtained reacts rror test. The possible structure of 'X' is:		
		CH ₃ COCH ₃		(CH ₃) ₂ CHOH		
		$CH_3CH_2CH_2 - OH$		CH ₃ CHO		
56.	The	alcohol which gives the most stable carb	ocati	on during dehydration is :		
	(A)	2-methyl-1-propanol	(B)	2-methyl-2-propanol		
	(C)	1-butanol	(D)	2-butanol		
57.	The	most stable conformation of 1,2-dimeth	ylcyc	lohexane is:		
	(A)	Diequatorial-trans-1,2-dimethylcycloh	exane			
	(B)	Diaxial-trans-1,2-dimethylcyclohexane	2			
	(C) Equatorial-axial-cis-1,2-dimethylcyclohexane					
	(D)	Boat conformation				
58.			centra	ated acids. The reactivity of acids decreases in		
		order:	(D)	MGI MD M		
	(A)	HI>HBr>HCl	(B)	HCl>HBr>HI		
	(C)	HBr > HI > HCl	(D)	HBr > HCl > HI		
59.		The reactivity of alcohols with the Lucas reagent decreases in the order:				
	(A) Allyl alcohol > Secondary alcohol > Primary alcohol					
	(B)	Secondary alcohol > Allyl alcohol > Pr				
	(C)	Primary alcohol > Secondary alcohol >	•			
	(D)	Secondary alcohol > Primary alcohol >	> Ally	'l alcohol		

- 60. No. of acidic hydrogen in 1-butyne:
 - (A) 1

(B) 2

(C) 3

- (D) 4
- 61. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH gives:
 - (A) Sodium benzoate and methyl alcohol
 - (B) Sodium formate and benzyl alcohol
 - (C) Sodium formate, benzyl alcohol and methyl alcohol
 - (D) Soidum benzoate, benzyl alcohol and methyl alcohol
- 62. The appropriate reagent for the transformation

(A) LiAlH₄

(B) NH₂NH₂, KOH

is:

(C) H₂/Ni

- (D) NaBH₄
- 63. For obtaining butan-2-one from acetyl chloride which of the following reagents can be used?
 - (A) CH₂CH₂MgBr

(B) CH₂CH₂Li

(C) (CH₂CH₂)₂CuLi

- (D) Na in dry ether
- 64. To distinguish between 2-pentanone and 3-pentanone, which reagent can be used?
 - (A) NaOH/I₂

(B) $K_2Cr_2O_7/H^+$

(C) Zn-Hg, HCl

- (D) LiAlH₄
- 65. A carbonyl compound reacts with HCN to form cyanohydrin which on hydrolysis forms a racemic mixture of d-hydroxy acid. The carbonyl compound is:
 - (A) acetone

(B) formaldehyde

(C) diethyl ketone

- (D) acetaldehyde
- 66. When $H_2C = CH COOH$ is reduced with LiAl H_4 , the compound obtained will be:
 - (A) CH₃CH₂COOH

- (B) CH_3CH_2CHO
- (C) CH₃CH₂CH₂ OH
- (D) $H_2C = CHCH_2 OH$

TDC-41587-A

(11)

- 67. Butanoic acid when reacted with bromine in the presence of phosphorus forms:
 - (A) $CH_3 CH_2 CH COOH$ Br
- (C) $CH_3 CH_2 CH_3 COBr$
- (D)

- 68. In the reaction

. The product X is:

- (A) $CH_3 C CN$
- (B) $CH_3 C = CH_2$
- (C) $CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_2 CH_3 CH_$
- 69. The best method to prepare cyclohexane, from cyclohexanol is by using:
 - (A) Conc. HCl + ZnCl,
- (B) Conc. H₃PO₄

(C) HBr

- (D) Conc. HCl
- 70. The decreasing order of basicity of amines as follows:
 - (A) $NH_3 > CH_3 NH_2 > (CH_3)_2 NH > (CH_3)_3 N$
 - (B) $(CH_3)_3N > (CH_3)_2NH > CH_3NH_3 > NH_3$
 - (C) $(CH_3)_2NH > CH_3NH_2 > NH_3 > (CH_3)_3N$
 - (D) $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$
- 71. The reaction of CHCl₃ with alcoholic KOH and P-toluidine forms:

72. In the following reaction

The structure of major product X is:

73.
$$N_2^+Cl^-$$
 + Reagent heat

The reagent is:

(A) H_3PO_2 , H_2O

(B) H_2O, H^+

(D)

(C) Cu/HCl

(D) NaNO₂, HCl

74. Products of the following reaction are:

$$CH_3C \equiv CCH_2CH_3 = \frac{KMnO_4, KOH}{373 - 383 K}$$

- (A) $CH_3COOH + CO_2$
- (B) CH₃COOH + CH₃CH₂COOH
- (C) $CH_3CHO + CH_3CH_2CHO$
- (D) CH₃COOH + CH₃COCH₃
- 75. Diastereomers, differing in configuration about C-I are called:
 - (A) Epimers

(B) Anomers

(C) Enantiomers

(D) Conformers

TDC-41587-A

13)

- 76. The compound $(CH_3)_2 C = CH CH_3$ on reaction with $NaIO_4$ in the presence of $KMnO_4$ gives:
 - (A) CH₃COCH₃

- (B) CH₃COCH₃ + CH₃COOH
- (C) CH₃COCH₃ + CH₃CHO
- (D) $CH_3CHO + CO_7$
- 77. The helix structure of proteins is stabilized by:
 - (A) Peptide bonds

(B) Hydrogen bonds

(C) Disulphide bonds

(D) van der Waals forces

78. In the reaction

The product X is:

(A) NH,

(B) NH₂

(C) NH.

- (D) no reaction
- 79. The number of signals obtained for cyclohexane at –70°C in NMR spectra:
 - (A) 1

(B) 2

(C) 3

- (D) 6
- 80. Which of the following structures is chiral?
 - $(A) \qquad \begin{array}{c} Br \\ Cl \\ Br \end{array}$

 $(B) \qquad \begin{array}{c} Br & Cl \\ \hline \\ Cl & Br \end{array}$

(C) $\operatorname{Br} \bigwedge_{\operatorname{Cl}}^{\operatorname{Br}}$

(D) Br Cl

81.	1. Which of the following is an extensive property?			
	(A)	Pressure	(B)	Volume
	(C)	Temperature	(D)	Density
82.	Max	imum work is obtained when the gas is	allow	ved to expand:
		isothermally and irreversibly		isothermally and reversibly
	(C)	adiabatically and reversibly	(D)	freely into vacuum
83.	The	relation between equilibrium constant ((K) an	d standard free energy (G°) is:
	(A)	$\Delta G^{\circ} = RT \ln K$		$\Delta G^{o} = -RT \log k$
	(C)	$\Delta G^{o} = -RT \ln K$	(D)	$K = e^{-\Delta G^0/2.303 \text{ RT}}$
84.	The	free energy change with change of pres	sure a	nd temperature is given by equation :
	(A)	dG = VdP - SdT	(B)	dG = SdT - VdP
	(C)	dG = VdP + SdT	(D)	dG = dH - TdS
85.	A re	action is non-spontaneous when:		
	(A)	ΔH is –ve, ΔS is +ve	(B)	ΔH is +ve, ΔS is -ve
	(C)	ΔH is –ve, ΔS is –ve	(D)	ΔH is +ve, ΔS is +ve
86.	The	heat released when NH ₄ OH and HCl no	eutral	ise is:
	(A)	13.7 Kcal	(B)	>13.7 Kcal
	(C)	<13.7 Kcal	(D)	None of these
87.		ratio of the rate of diffusion of He an	d CH	under identical conditions of pressure and
	(A)	4	(B)	2
	(C)	1	(D)	0.5
88.	Ath	igh pressure, the van der Waals' equation	on is v	vritten as :
	(A)	$(P + a/V_m^2) (V_m - b) = RT$	(B)	$PV_{m} = RT - a/V_{m}$
	(C)	$PV_{m} = RT + Pb$		$PV_{m} = RT$
89.		of given concentrations terms which is the	he bes	t way to represent the concentration normality,
	(A)	Normality	(B)	Molarity
	(C)	Ppm	(D)	Molality
TD	C-415	587-A	(15)	[Turn over

90. At 10°C, the osmotic pressure of urea solution is 500 mm. The solution is diluted and the temperature is raised to 25°C. The osmotic pressure of dilute solution is 105.3 mm at 25°C. The extent of dilution can be shown as:

 $(V_{_{i}}$ and $V_{_{f}}$ are initial and final volumes of solution)

(A) $V_f = V_i$

(B) $V_f = 5 V_i$

(C) $V_f = \frac{1}{5}V_i$

- (D) $V_{f} = 6 V_{f}$
- 91. The calomel electrode is reversible with respect to:
 - (A) Hg

(B) H⁺

(C) Hg⁺

- (D) Cl-
- 92. Four Faradays of electricity was passed through aqueous solutions of AgNO₃, NiSO₄, FeCl₃ and PbCl₄ kept in four vessels using inert electrodes. The ratio of moles of Ag, Ni, Fe and Pb deposited will be:
 - (A) 12:6:4:3

(B) 12:4:6:3

(C) 4:3:2:1

- (D) 1:2:3:4
- 93. The decreasing order of equivalent conductance of alkalimetal halides at infinite dilution is:
 - (A) LiCl > NaCl > KCl > CsCl
- (B) CsCl > KCl > NaCl > LiCl
- (C) KCl > CsCl > NaCl > LiCl
- (D) LiCl > KCl > NaCl > CsCl
- 94. The pH of 10^{-8} molar solution of HCl in water is:
 - (A) 8

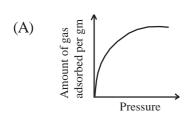
(B) -8

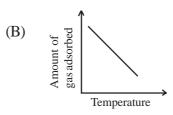
(C) between 7 and 8

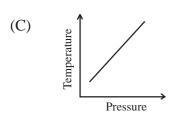
- (D) between 6 and 7
- The pH of a solution of the salt of weak acid and weak base is given by:
 - (A) $pH = \frac{1}{2}(PK_w + PK_a + \log c)$ (B) $pH = \frac{1}{2}(PK_w + PK_a PK_b)$
- - (C) $pH = \frac{1}{2}(PK_w PK_b \log c)$ (D) $pH = \frac{1}{2}(PK_w PK_a PK_b)$
- 96. The solubility of a sparingly soluble metal halide MX, in water is 1×10^{-4} M. Its solubility product is:
 - (A) $1 \times 10^{-8} \,\mathrm{M}^3$

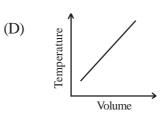
(B) $1 \times 10^{-4} \,\mathrm{M}^3$

(C) $4 \times 10^{-12} \,\mathrm{M}^3$


(D) $1 \times 10^{-12} \,\mathrm{M}^3$


97.	A sta	A standard hydrogen electode has zero electrode potential because :		
	(A)	Hydrogen is easiest to oxidise		
	(B)	The electrode potential is assumed to	be zeı	o
	(C)	Hydrogen atom has only one electron		
	(D)	Hydrogen is lightest element		
98.		a reversible reaction if the concentrate of the concentration constant will:	ations	s of the reactants are doubled at a definite
	(A)	be doubled	(B)	become half
	(C)	become one-fourth	(D)	remain the same
99.	Vari	ation of K with temperature as given by	Van'	t Hoff equation can be written as:
	(A)	$\log \frac{K_2}{K_1} = -\frac{\Delta H}{2.303} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$		
	(B)	$\log \frac{K_2}{K_1} = \frac{\Delta H}{2.303} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$		
	(C)	$\log \frac{K_2}{K_1} = -\frac{\Delta H}{2.303} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$		
	(D)	The equilibrium does not depend on te	mper	ature
100.	The	equilibrium constant of the reaction H ainer is reduced to one half of its original	₂ (g) + l volu	$I_2(g) \longrightarrow 2HI(g)$ is 50. If the volume of the me, the equilibrium constant will be:
	(A)	25	(B)	50
	(C)	75	(D)	100
101.	Rate	of physical adsorption increases with:		
	(A)	decrease in temperature	(B)	increase in temperature
	(C)	decrease in pressure	(D)	decrease in surface area


17)


TDC-41587-A

102. Which of the following graph represent adsorption isostere:

103. The role of a catalyst in a reversible reaction is to:

- (A) increase the rate of forward reaction
- (B) increase the rate of backward reaction
- (C) alter the equilibrium constant of a reaction
- (D) allow the equilibrium to be achieved quickly

104. The enzyme is completely ineffective temporarily:

- (A) at very high temperature
- (B) at extremely low temperature
- (C) during chemical reaction
- (D) under atmospheric pressure

105. Fog is a colloidal solution of:

(A) gas in a liquid

(B) liquid in a liquid

(C) liquid in a gas

(D) solid in a gas

106. Which is called micelle?

(A) AS_2O_3 sol

- (B) Na₂CO₃ solution
- (C) Sodium stearate concentrated solution (D) Sb₂S₃ so

107. In the coagulation of a positive sol, the coagulation power of K_2SO_4 (I), Na_3PO_4 (II), $K_4[Fe(CN)_6]$ (III) and NaCl (IV) is in the order:

 $(A) \quad I > II > III > IV$

 $(B) \quad II > I > III > IV$

(C) III > II > IV

(D) IV > I > II > III

- 108. To separate and identify the ions in a mixture that may contain Pb^{2+} , Cu^{2+} , and Mg^{2+} . Use the reagents H_2S , HCl and NaOH. They should be added in the order :
 - (A) HCl, H₂S, NaOH

(B) H₂S, HCl, NaOH

(C) HCl, NaOH, H₂S

- (D) NaOH, H₂S, HCl
- 109. The most important buffer in the blood consists of:
 - (A) HCl and Cl-

(B) H₂CO₃ and HCO₃

(C) H₂CO₃ and Cl⁻

- (D) HCl and HCO₃
- 110. In the first order reaction, the concentration of the reactants is reduced to 25% in one hour. The half life period of the reaction is:
 - (A) 2 hrs

(B) 4 hrs

(C) 1/2 hr

- (D) $1/4 \, hr$
- 111. The temperature dependence of rate constant (K) of a chemical reaction is written in terms of Arrhenius equation $K = Ae^{-E_a/RT}$. Activation energy (E_a) of the reaction can be calculated by plotting:
 - (A) log K vs T

(B) $\log K \operatorname{vs} \frac{1}{T}$

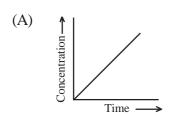
(C) K vs T

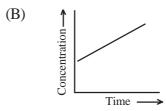
- (D) $K vs \frac{1}{\log T}$
- 112. Consider the chemical reaction,

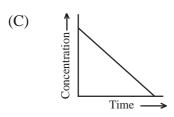
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

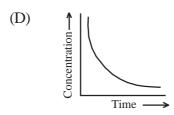
The rate of reaction can be expressed in terms of time derivative of concentration of $N_2(g)$, $H_2(g)$, $NH_3(g)$.

(A) Rate =
$$-\frac{d(N_2)}{dt} = -\frac{1}{3}\frac{d(H_2)}{dt} = \frac{1}{2}\frac{d(NH_3)}{dt}$$


(B) Rate =
$$-\frac{d(N_2)}{dt} = -3\frac{d(H_2)}{dt} = 2\frac{d(NH_3)}{dt}$$


(C) Rate =
$$\frac{d(N_2)}{dt} = \frac{1}{3} \frac{d(H_2)}{dt} = \frac{1}{2} \frac{d(NH_3)}{dt}$$


(D) Rate =
$$-\frac{d(N_2)}{dt} = -\frac{d(H_2)}{dt} = \frac{d(NH_3)}{dt}$$


TDC-41587-A

113. For a zero order reaction the plot of concentration of reactant versus time is:

114. For water system in the phase diagram, degree of freedom at triple points is:

(A) 2

(B) 1

(C) 0

(D) 3

115. The temperature at which a compound melts into a liquid of the same composition as the solid is called the :

- (A) congruent melting point
- (B) incongruent melting point
- (C) peritectic temperature
- (D) metastable point

116. If the concentration of CrO_4^{2-} ions in a saturated solution of silver chromate is 2×10^{-4} , the solubility product of silver chromate is :

(A) 4×10^{-8}

(B) 8×10^{-12}

(C) 16×10^{-12}

(D) 32×10^{-12}

117. The rate constant for the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} sec^{-1}$. If the rate is 2.4×10^{-5} M sec⁻¹, then the concentration of $N_2O_5(in \,\mu)$ is :

(A) 1.4

(B) 1.2

(C) 0.04

(D) 0.8

118. The root mean square velocity of one mole of a monoatomic gas having molecular mass M is μ_{ms} . The relation between the average kinetic energy (E) of the gas and μ_{ms} is :

(A)
$$\mu_{rms} = \sqrt{\frac{3E}{2M}}$$

(B)
$$\mu_{\rm rms} = \sqrt{\frac{2E}{3M}}$$

(C)
$$\mu_{rms} = \sqrt{\frac{2E}{M}}$$

(D)
$$\mu_{\rm rms} = \sqrt{\frac{E}{3M}}$$

119. Aluminium oxide may be electrolysed at 1000° C to furnish Al metal (atomic mass = 27 amu). The cathode reaction is: Al³⁺ + 3e \rightarrow Al. How much electricity is required to prepare 5.12 kg of Al by this method?

- (A) 5.49×10^7 coulomb
- (B) 1.83×10^7 coulomb
- (C) 5.49×10^4 coulomb
- (D) 5.49×10^{10} coulomb

120. For which change $\Delta H \neq \Delta U$?

- (A) $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$
- (B) $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(1)$
- (C) $C(s) + O_2(g) \Longrightarrow CO_2(g)$
 - (D) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

ROUGH WORK

ROUGH WORK

ROUGH WORK

