DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2012

Serial No.

MECHANICAL ENGINEERING Code No. 14

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A**, **B**, **C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- You have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.
 DO NOT write anything else on the Test Booklet.

Your Roll No.	

- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

TD	C-415	597-A		3 F	[Turn over				
	(C)	80 Kg	(D)	None of the above					
	(A)		` ′	40 N					
		ce ratio is $\sqrt{3}$, then the smaller force							
7.				er force is 40 N and the resultant to smaller					
	(C)	$\frac{M}{12}(a^2+b^2)$	(D)	$\frac{bd^3}{12}$					
	(A)	$\frac{M}{6}\left(a^2+b^2\right)$	(B)	$\frac{\mathrm{Ma}^2}{4} + \frac{\mathrm{Mb}^2}{12}$					
6.		mass moment of inertia of rectangular to plate through it is:	-	te of mass M and sides a and b about an axis					
		cross helical		straight bevel					
٥.		straight spur		spiral bevel					
5.	Two	skew shafts can be connected by		gaors.					
		None of the above	, 5 4 00	at tiself					
		be completely at rest moving in one direction and rotatin	ıg abo	out itself					
	` ′	A) rotate about itself without moving B) be completely at rost							
4.		ody is acted upon by a number of cop	olanar	r, non-concurrent forces, it may:					
	(C)	Third	(D)	Fourth					
	(A)	First	(B)	Second					
3.	The	resultant of forces $P = -2i - 3j$ and G	Q = 3i	i – 4j will lie in which quadrant ?					
		$\Sigma H = 0, \Sigma M = 0$	(D)	$\Sigma V = 0, \Sigma M = 0$					
2.		ase of cocurrent coplanar forces the α $\Sigma H = 0, \Sigma V = 0, \Sigma M = 0$		tion for equilibrium is : $\Sigma H = 0, \Sigma V = 0$					
	(D)	Same as moment of couple							
			berper	ndicular distance from the point of Force					
	(B)	•							
	(A)	Same as Couple							
1.	Mor	nent of a force about a point is:							

From gravitational law the weight W of an 80 kg in spacecraft travelling in a circular orbit

	280	km above earth is:		
		728 N	(B)	804·8 N
		646 N	(D)	None of above
9.	smo	kg homogeneous smooth sphere resorth vertical wall B. The contact force $F_A = 566 \text{ N}, F_B = 283 \text{ N}$ $F_A = 566 \text{ N}, F_B = 180 \text{ N}$	at A	
	(C)	$F_A = 566 \text{ N}, F_B = 180 \text{ N}$	(D)	$F_A = 180 \text{ N}, F_B = 283 \text{ N}$
10.	mass B are	s of 300 kg is placed at 2.4 m from le e:	ft end	as a mass of 50 kg per meter of length. If a d support A, the reactions at supports A and
	(A)	$A_y = 2840 \text{ N}, B_y = 1850 \text{ N}$	(B)	$A_y = 1864 \text{ N}, B_y = 2840 \text{ N}$ None of above
	(C)	$A_y = 1850 \text{ N}, B_y = 2840 \text{ N}$	(D)	None of above
11.		tension in the cable supporting a lift is less when moving upward		is less when moving downward
		is more when moving downward		_
	(0)	is more when moving downward	(2)	is more when moving up wards
12.		ody of mass m moving with constant vesticks to it. The velocity combined m		ty hits another body of the same mass at rest after collision is:
	(A)	$\frac{V}{4}$	(B)	V
	(C)	2 V	(D)	$\frac{V}{2}$
13.	The	inherent property of a body which of	fers r	esistance to change is:
		weight		mass
	(C)	momentum	(D)	inertia
14.		ort with velocity v when the spring is		ess K is pushed to the right side-away from retched. The maximum extension of spring
	(A)	$\sqrt{\frac{K}{2m}} \cdot \upsilon$		$b = \sqrt{\frac{m}{K}} \upsilon$
	(C)	$\frac{K}{m} \cdot \upsilon$	(D)	$d = \sqrt{\frac{K}{m}} \cdot \upsilon$

8.

15.	appl	_		rain at a speed of 80 kmph, when brakes are gnitude of 4 N/ton. The distance travelled
	(A)	69 m 61·72 m	` ′	71·62 m 72·61 m
16.	(A) (B) (C)	pressure angle between a pair of mat Common tangent at p.c.d. and arc o Common tangent at p.c.d. and common Ratio of arc of contact & path of co None of above	f con	tact
17.	(A)	dimensions of power are : $ ML^2T^2 \\ ML^2T^3 $	(B) (D)	MLT^3 ML^2T^{-3}
18.	(A)	ch of the following is a scalar quanti energy torque	(B) (D)	momentum impulse
19.				orizontal floor. If it rebounds to a height of estitution between the ball & the floor is:
	(A) (C)	$\frac{1}{4}$	(B) (D)	$\frac{2}{3}$
	(C)	$\frac{3}{2}$	(D)	$\frac{4}{3}$
20.	In a	Simple Harmonic Motion the time pe	eriod	T is given by:
	(A)	$\frac{2\pi}{\omega}$	(B)	2π ω
	(C)	$\frac{2\pi}{\omega^2}$	(D)	
21.	Whe	en a body slides down on inclined sur	face	the acceleration of the body is given by:
	(A) (C)	g $g \cos \theta$		$g \sin \theta$ $g \tan \theta$
			(D)	5 mil 0
22.		link or element must be:	(D)	resistant hadr
	(A) (C)	rigid body both (a) & (b) above	(B) (D)	resistant body None of the above
	(\smile)	55th (u) & (b) 455 to	(-)	1,0110 01 1110 1110 1100 10

TDC-41597-A

[Turn over

- 23. When two elements have surface contact when relative motion takes place and surface of one element slides over the surface of other, the pair formed is known as:
 - (A) higher pair

(B) lower pair

(C) force-closed pair

- (D) turning pair
- 24. A kinematic chain requires minimum of :
 - (A) 2 links and 2 turning pair
- (B) 3 links and 3 turning pair
- (C) 4 links and 4 turning pair
- (D) None of above
- 25. The time period of a compound pendulum is equal to:

$$(A) \quad 2\pi\,\sqrt{\frac{gh}{K^2+h^2}}$$

$$(B) \quad 2\pi \, \sqrt{\frac{K^2 + h^2}{gh}}$$

$$(C) \quad \frac{1}{2\pi} \sqrt{\frac{K^2 + h^2}{gh}}$$

$$(D) \quad \frac{1}{2\pi} \sqrt{\frac{gh}{K^2 + h^2}}$$

where K is radius of gyration about an axes through C.G. and h is the distance of its C.G. from the axis of suspension.

26. A harmonic motion is expressed as

$$x = 1.25 \rho_{in} \left(15\pi t - \frac{x}{3} \right)$$

where x is in meters. The frequency of motion would be:

(A) 1.25 Hz

(B) 15 Hz

(C) $15 \pi Hz$

- (D) 7.5 Hz
- 27. A vibrating mass under the condition of resonance has phase angle (i.e. angle between displacement vector and disturbing force vector) as:
 - (A) 0°

(B) $\frac{\pi}{4}$

(C)

- (D) π
- 28. A circular disc of moment of inertia J is attached to lower end of elastic vertical shaft which is fixed at other end. If the mass of shaft is small and K is the torsional stiffness of shaft, the natural frequency of torsional vibration is:
 - (A)

(B) $\omega_n = \sqrt{\frac{K}{g}}$

(C) $\omega_n = \sqrt{\frac{J}{K}}$

(D) $\omega_n = 2\pi \sqrt{\frac{J}{\kappa}}$

- 29. A simply supported beam of length L between supports is loaded at the center of beam with a mass M. The natural frequency in Hz would be:
 - (A) $\frac{1}{2\pi} \sqrt{\frac{48 \text{ EI}}{\text{ML}^3}}$

(B) $2\pi \sqrt{\frac{48 \text{ EI}}{\text{ML}^3}}$

(C) $\frac{1}{2\pi} \sqrt{\frac{16 \text{ EI}}{\text{MI}^3}}$

- (D) $\frac{1}{\pi} \sqrt{\frac{48 \text{ EI}}{\text{ML}^3}}$
- In a Hartnell governor if the stiffness of spring is increased, the governor will:
 - (A) Become more sensitive
- (B) Becomes less sensitive

(C) Starts Hunting

- (D) Become isochronous
- 31. The number nodes in a shaft carrying two rotors at two ends will be:
 - (A) Zero

(B) One

(C) Two

- (D) None of above
- 32. Modulus of rigidity is given by :
 - stress (A) strain

compressive stress (B) compressive strain

shear stress (C) shear strain

- (D) None
- A tensile load 'P' acts on a length l and area of cross-section A. The change in length would
 - (A) $\frac{P}{l AE}$

Al

(B)

- (D) $\frac{A l}{PE}$
- A cantilever beam of length 'l' carries a uniformly distributed load over the whole length.

The bending moment diagram will be:

- (A) Parabola with maximum ordinate at the centre
- (B) Parabola with maximum ordinate at cantilever end
- (C) Triangle with maximum ordinate at free end
- (D) Triangle with maximum ordinate at cantilever end

[Turn over

35.	A simply supported beam carries a uniform over the whole length 'l'. The shear force	•	distributed load of W Newton unit length e centre is :
	(A) $\frac{\mathrm{w}\ \ell}{2}$	(B)	$\frac{\mathrm{w}\;\ell^2}{8}$
	(C) $\frac{\mathrm{w} \ \ell}{4}$	(D)	Zero
36.	A solid circular shaft of diameter D carr	ies ar	n axial load W. If the same load is applied
	axially to a hollow cylinder shaft of inner	r dian	neter as $\frac{D}{2}$, the ratio of stress in solid shaft
	to that of hollow shaft would be:		
	(A) $\frac{1}{2}$	(B) (D)	$\frac{1}{4}$
	(A) $\frac{1}{2}$ (C) $\frac{4}{3}$	(D)	$\frac{3}{4}$
37.	The expression EI $\frac{d^3y}{dx^3}$ at section of men	mber	represent:
	(A) Shearing force	(B)	Rate of loading
	(C) Bending moment	(D)	Slope
38.	When a shaft is subjected to torsion, the re of rigidity G of the shaft and the angle of		between maximum shear stress f_s , modulus θ is given by :
	(A) $\frac{G \theta}{f_s} = \frac{R}{L}$	(B)	
	(C)	(D)	
	where L is length of shaft and R is the rad	dius c	of shaft.

(A)

40. In metal cutting operation chips are formed due to :

39. In metal cutting operation continuous chips are produced while machining:

(A) Linear deformation

(A) brittle material

(C) hard material

(B) Shear deformation

(B) ductile material

(D) soft material

(C) Linear translation

(D) None

41. The average cutting speed for machining cast iron by a high speed steel tool is:

	` ′	10 m/min 30 m/min	` /	22 m/min 300 m/min	
42.		=		ing speed 'V' in m/min is given as:	
	(A)	$V^n T = C$	(B)	$V T^n = C$	
	(C)	$\frac{V^n}{T} = C$	(D)	$\frac{T^n}{V} = 0$	
	whe	re C is constant and 'n' is an expor	nent der	pending upon tool and workpiece.	
43.	Tool	Signature:			
	(A)	is a natural method of tool identif	ication		
	(B)	is a numerical method of tool ide	ntificati	ion	
	(C)	represents tool life			
	(D)	none of the above			
44.	-	ration of cutting holes in sheet by	-		
		drilling	` '	shearing	
	(C)	extrusion	(D)	none of above	
45.		d chisel are made by:			
		rolling		forging	
	(C)	piercing	(D)	drawing	
46.	_	ging of steel is done at a temperatur	re of:		
	(A)	400°C	(B)		
	(C)	1000°C	(D)	1300°C	
47.		m welding is used for metal sheets	_	9	
	` ′	0.025 to 3 mm	\ /	3 to 6 mm	
	(C)	6 to 10 mm	(D)	more than 10 mm	
48.	Whi	ch of the following defect in castin	ngs is ca	aused by the molten metal?	
	(A)	Scab	(B)	Swell	
	(C)	Shrinkage	(D)	Blow Holes	
49.	In w	rirecut EDM the electrode is:			
	(A)	a thin wire	(B)	a thin sheet	
	(C)	a copper bar	(D)	a tungsten plate	
TriD.	C 415	707 A		0	[Th
ΙD	U-415	597-A		9 F	[Turn over

50.	Whi	ch of the following is a single point of	cutting	g tool ?
	(A)	Milling cutter	(B)	Hacksaw blade
	(C)	Grinding wheel	(D)	Parting tool
51.	Whi	ch type of gear can be manufactured	by ex	trusion process ?
	(A)	Bevel Gears	(B)	Harring bon Gear
	(C)	Helical Gear	(D)	Spur Gear
52.	Inter	rnal Gears and splines used in automo	obile i	industry are manufactured by:
	(A)	Casting	(B)	Milling
	(C)	Broaching	(D)	Gear shaping
53.	Gear	rs made by sand casting are used in:		
	(A)	Automobile	(B)	Machine tools
	(C)	Diesel locomotives	(D)	Concrete mixers
54.	The	process which takes place below rec	rystal	lisation temperature, is known as:
	(A)	hot working process	(B)	cold working process
	(C)	casting process	(D)	none of above
55.	Slag	inclusion in casting is a:		
	(A)	Surface defect	(B)	Internal defect
	(C)	Superficial defect	(D)	None
56.	Time	e study is done by means of:		
	(A)	Stop watch	(B)	Time study sheet
		Planning chart	(D)	Both (A) and (B) above
57.	Time	e standards developed by time study	can b	e used for :
	(A)	plan layout	(B)	budgetary control
	(C)	equipment selection	(D)	wages & incentives
58.	-	phic representation of the separable step	os of e	each pertinent body member of the individual
	(A)	Bar chart	(B)	SIMO chart
	, ,	Gantt chart	(D)	None

59.	Layout suitable for automobile manufacturing unit is							
	(A)	process layout	(B)	product layout				
	(C)	combination layout	(D)	all above				
60.	Obje	ective of work measurement is to:						
		plan and schedule the production						
		formulate proper incentive scheme						
		estimate the selling price and delive	ry da	te				
	(D)	all above						
61.		ak even analysis consist of:						
		fixed expense	` ′	variable cost				
	(C)	sales revenue	(D)	all above				
62.	Dire	ct cost of a project constitutes						
	(A)	cost of material	(B)	wages of labour				
	(C)	both (A) and (B)	(D)	none				
63.	A continuous production of products of same design on a line of machines arranged according to the required sequence of operation is known as:							
	(A)	flow production	(B)	mass production				
	(C)	line production	(D)	continuous production				
64.	The unit cost in case of batch production as compared to jobbing production is:							
	(A)	High	(B)	Low				
	(C)	Same	(D)	None				
65.	Jobs	going behind schedule are convenie	ntly s	hown in				
	(A)	bar chart	(B)	Gantt chart				
	(C)	travel chart	(D)	pi chart				
66.		hematical technique used for finding mum manner, is known as:	the be	est use of limited resources of concern in an				
	(A)	queuing theory	(B)	Linear programming				
	(C)	value analysis	(D)	game theory				
67.	Que	uing theory is used for						
	(A)	job-shop scheduling	(B)	inventory problems				
	(C)	traffic congestion studies	(D)	all above				

TDC-41597-A 11 [Turn over

68.	For a closed system the difference between heat added to the system and work done by the							
	syste	em is equal to change in:						
	(A)	temperature	(B)	internal energy				
	(C)	enthalpy	(D)	entropy				
69.	Spec	cific heat is the amount of heat requir	ed to	raise the temperature :				
	(A)	by unit degree of a substance	(B)	by unit degree of unit mass				
	(C)	by 10 ² degree of unit mass	(D)	none				
70.	Whe	en two bodies are in thermal equilibr	rium	with a third body, they are also in thermal				
	equi	librium with each other. This stateme	ent is	:				
	(A)	Zeroth law of thermodynamics	(B)	First law of thermodynamics				
	(C)	Second law of thermodynamics	(D)	None of the above				
71.	Acc	ording to kinetic theory of gases, at a	bsolu	ite zero :				
	(A) specific heat of molecules reduces to zero							
	(B)	kinetic energy of molecules reduces	to ze	ero				
	(C)	volume of gas reduces to zero						
	(D)	pressure of gas reduces to zero						
72.	-	al volume of all gases at same tempecules. This is according to:	peratı	are and pressure contain equal number of				
	(A)	Charle's law	(B)	Avogadro law				
	(C)	Joule's law	(D)	Gay Lussac law				
73.	In is	othermal expansion, work done by a	gas d	lepends on :				
	(A)	atomicity of gas only	(B)	expansion ratio only				
	(C)	adiabatic index	(D)	both (A) and (B) above				
74.	Whe	en a perfect gas is expanded through a	ın ape	erture of minute dimensions, the process is:				
	(A)	isothermal	(B)	adiabatic				
	(C)	isentropic	(D)	throttling				

- 75. If v_1 is the volume at beginning and v_2 is volume at the end of expansion, then the expansion ratio 'r' is given by :
 - (A) $\frac{v_1}{v_2}$

(B) $\frac{v_2}{v_1}$

(C) $\frac{v_1 + v_2}{v_1}$

- (D)
- 76. The efficiency of the Carnot cycle can be increased by :
 - (A) increasing the highest temperature
 - (B) decreasing the lowest temperature
 - (C) decreasing the highest temperature
 - (D) both (A) and (B) above
- 77. Compression ratio of a petrol engine is:
 - (A) 3 to 6

(B) 5 to 8

(C) 15 to 20

- (D) 20 to 30
- 78. The efficiency of a Rankine cycle:
 - (A) increases with decreasing temperature of heat rejection

 $\sqrt{D} \cdot v_2$

- (B) decreases with decreasing temperature of heat rejection
- (C) decreases with increasing temperature of heat rejection
- (D) none
- 79. The Reynolds number for pipe flow is given by :
 - (A)

 $(B) \quad \frac{VD\,\mu}{\delta}$

 $(C) \quad \frac{VD\,\rho}{u}$

- (D) $\frac{VD}{u}$
- 80. The mercury water manometer indicates a gauge difference of 400 mm. The difference of pressure measured in meters of water is:
 - (A) 0·4

(B) 0.8

(C) 10·8

(D) 5·44

- 81. Steady flow occurs when:
 - (A) The pressure does not change along the flow
 - (B) The velocity does not change
 - (C) There is no obstruction on the path of flow
 - (D) Conditions do not change with time
- 82. The continuity equation in ideal fluid flow:
 - (A) States that the net rate of inflow into any small volume must be zero
 - (B) States that energy is constant every where in the fluid
 - (C) States that energy remains constant along stream line
 - (D) Applies to irrotational flow
- 83. Which of the following is laminar flow?
 - (A) Rise of water in plants through roots
 - (B) Movement of blood in the arteries of a human body
 - (C) Flow of oil in measuring instruments
 - (D) All above
- 84. The dimensions of dynamic viscosity are :
 - (A) $ML^{-1}T^{-2}$

(B) MLT⁻²

(C) $ML^{-1}T^{-1}$

- (D) $ML^{-1}T$
- 85. The Bernoulli's equation $\frac{V^2}{2g} + \frac{P}{\gamma} + Z = \text{constant represent total energy per unit}$:
 - (A) mass

(B) volume

(C) weight

- (D) specific weight
- 86. The loss of energy in commercial pipe fitting is denoted by loss coefficient 'K_L' which is expressed by :
 - (A) $h_L = K_L \frac{V^2}{2g}$

(B) $h_L = K_L \frac{V^2}{g}$

(C) $h_L = \frac{1}{K_I} \frac{V^2}{2g}$

(D) None

- 87. The boundary layer exists due to:
 - (A) Surface Tension

(B) Fluid density

(C) Fluid viscosity

- (D) All above
- 88. The laminar boundary layer changes from Laminar to turbulent when plate Reynolds number approaches a value in the range :
 - (A) 2×10^6 to 5×10^6

(B) 2×10^8 to 8×10^8

(C) 3×10^5 to 6×10^5

- (D) None of above
- 89. The discharge for a laminar flow through a pipe of diameter 40 mm having centre-line velocity of 1.5 m/s in m³/s is :
 - (A) $\frac{3\pi}{59}$

(B)

(C)

- (D)
- 90. In a Navier-Stoke equation the force considered is:
 - (A) viscous force

(B) pressure force

(C) gravity force

- (D) all above
- 91. Transfer of heat from one body to another takes place :

- (A) when there is temperature difference between the bodies
- (B) both bodies must be in contact
- (C) both bodies must be solid
- (D) all above
- 92. According to Fourier's law, amount of heat flow Q through the body in unit time is equal to:
 - (A)
 - (B) $K \frac{dx}{dT}$
 - (C) KA $\frac{dT}{dx}$
 - (D) $KA \frac{dx}{dt}$; where K is coefficient of thermal conductivity, A is surface area of heat flow,
 - $\frac{dT}{dx}$ is temperature gradient and dx is body thickness

- 93. Thermal conductivity of air at room temperature in KCal/m-hr-°C is approximately:
 - (A) 0.051

(B) 0.09

(C) 0·10

- (D) 0.51
- 94. The ratio of heat flow $\frac{Q_A}{Q_B}$ from two walls of same thickness having thermal conductivity

 $K_A = 2 K_B$ for the same temperature difference will be :

(A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) 2

- (D) 4
- 95. Pipes are isolated so that:
 - (A) they may not break under pressure
 - (B) there is minimum corrosion
 - (C) they can withstand higher fluid pressure
 - (D) heat loss from the surface is minimized
- 96. Steady state heat transfer occurs when:
 - (A) the flow of heat is negligible
 - (B) the flow of heat is uniform
 - (C) the flow of heat is independent of time
 - (D) the flow of heat is uniformly decreasing
- 97. Three metal walls of same cross-sectional area having thermal conductivity in the ratio 1:2:4 transfer heat at the rate of 15000 kcal/hr. For same thickness of wall, the temperature drop will be in the ratio:
 - (A) 1:2:4

(B) 4:2:1

(C) $1:\frac{1}{2}:\frac{1}{4}$

- (D) $\frac{1}{4}:\frac{1}{2}:1$
- 98. The value of Prandtl number for air is of the order of:
 - (A) 1000

(B) 67

(C) 9·7

(D) 0.7

99.		In heat exchanger design one transfer unit means : (A) condition when the change in temperature of one stream numerically equals the average							
	(B)	driving force The section of heat exchanger w centigrade	hich v	vill cause temperature drop of one degree					
	(C)	9	n case	the heat exchange was for a temperature					
	(D)	One fluid exchanging with anothe	r fluid	of the same chemical composition					
100.	Whi		give le	east running cost of the production of electric					
	-	Steam power plant	(B)	Diesel engine power plant					
		Gas turbine power plant		Nuclear power plant					
101.	The	carbon percentage in diesel oil is no	early:						
	(A)	86%	(B)	74%					
	(C)	66%	(D)	52%					
102.	Whi	ich plant has least pollution problen	n ?						
		Steam power plant		Hydro-electric power plant					
	(C)	Gas turbine power plant	(D)	Nuclear power plant					
103.	The	generating station is to supply fou	r regio	ns of loads with peak demands of 10 MW,					
		MW, 20 MW and 30 MW. If the divon is:	versity	factor is 1.5 the maximum demand on the					
		70 MW	(B)	60 MW					
	(C)	50 MW	(D)	45 MW					
104.	Stea	m enters the steam nozzle at:							
	(A)	low pressure and low velocity	(B)	high pressure and high velocity					
	(C)	high pressure and low velocity	(D)	low pressure and high velocity					
105.	The	expansion of steam in nozzle follow	ws:						
	(A)	Rankine Cycle	(B)	Carnot Cycle					
	(C)	Joule Cycle	(D)	Stirling Cycle					
	Q 44-	-0-							
TD	U-415	597-A		17	[Turn over				

106.	Ratio	o of useful heat drop to the isentropic	c heat	t drop is known as :
	(A)	boiler efficiency	(B)	nozzle efficiency
	(C)	condenser efficiency	(D)	vacuum efficiency
107.	The	isentropic expansion of initially dry	satura	ated steam through the nozzle may approximately be given
	by:			
	` /	PV = constant	` /	$PV^{1\cdot 2} = constant$
	(C)	$PV^{1\cdot135} = constant$	(D)	$PV^{1\cdot3} = constant$
108.	Duri	ng idling a petrol engine requires :		
	(A)	lean mixture	(B)	rich mixture
	(C)	chemically correct mixture	(D)	none of above
109.	In sp	park ignition engine the possibility of	f knoc	cking can be reduced by:
	(A)	increasing compression ratio		
	(B)	decreasing compression ratio		
	(C)	increasing the coolant temperature		
	(D)	advancing the spark timing		
110.	Pow	er plant having least running cost of	produ	uction of electric power is:
	(A)	Gas turbine power plant	(B)	Hydroelectric power plant
	(C)	Nuclear power plant	(D)	Steam power plant
111.	In S.	I. unit one tonne of refrigeration is e	qual 1	to:
	(A)	110 kJ/min	(B)	210 kJ/min
	(C)	50 kJ/min	(D)	none
112.	A re	frigerant should have low:		
	(A)	boiling point	(B)	specific heat of liquid
	(C)	specific volume of vapour	(D)	all above
113.	Freo	n-12 has operating pressure about:		
	(A)	2 kg/cm ²	(B)	8 kg/cm ²
	(C)	15 kg/cm ²	(D)	30 kg/cm^2

114.	The	domestic refrigerator has C.O.P.:		
	(A)	more than 1	(B)	less than 1
	(C)	equal to 1	(D)	none
115.	In a	psychometric chart sensible heating of	or co	oling is represented by:
	(A)	a vertical line	(B)	a horizontal line
	(C)	a curved line	(D)	an inclined line
116.	Duri	ng dehumidification process specific	hum	idity:
	(A)	increases	(B)	decreases
	(C)	remains same	(D)	none
117.	Low	rest C.O.P. is of:		
	(A)	vapour compression cycle using dry	com	pression
	(B)	vapour compression cycle using we	t com	pression
	(C)	vapour compression cycle with supe	erheat	ted vapour
	(D)	vapour absorption cycle		
118.	Mas	s of water vapour present in 1 m ³ of o	dry ai	r is known as :
	(A)	relative humidity	(B)	absolute humidity
	(C)	percentage humidity	(D)	humidity ratio
119.	A st	orage tank which receives refrigerant	t fron	n evaporator and prevent from flowing into compressor is
	knov	wn as :		
	(A)	accumulator	(B)	agitator
	(C)	condenser	(D)	balancer
120.	C.O.	.P. of a vapour absorption system can	be ir	ncreased by using:
	(A)	vapour compressor	(B)	heat exchanger
	(C)			none

ROUGH WORK