DO NOT OPEN THIS TEST BOOKLET	UNTIL YOU ARE ASKED TO DO SO			
COMBINED COMPETITIVE (PRE	LIMINARY) EXAMINATION, 2012			
Serial No. STATI	STICS			
Code	No. 21			
Time Allowed : Two Hours	Maximum Marks : 300			
INSTR	UCTIONS			
 IMMEDIATELY AFTER THE COMMENCEME THAT THIS TEST BOOKLET DOES NOT HAV OR ITEMS, ETC. IF SO, GET IT REPLACED ENCODE CLEARLY THE TEST BOOKLET SI APPROPRIATE PLACE IN THE RESPONSE 	NT OF THE EXAMINATION, YOU SHOULD CHECK TE ANY UNPRINTED OR TORN OR MISSING PAGES BY A COMPLETE TEST BOOKLET. ERIES A, B, C OR D AS THE CASE MAY BE IN THE SHEET.			
3. You, have to enter your Roll Number on this	Your Roll No.			
Test Booklet in the Box provided alongside.				
DO NOT write anything else on the Test Bookle	et.			
4. This Booklet contains 100 items (questions). Each item comprises <i>four</i> responses (answers). You will select <i>one</i> response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.				
5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not				
6. You have to mark all your responses ONLY on th <i>Response Sheet</i> .	e separate Response Sheet provided. See directions in the			
7. All items carry equal marks. Attempt ALL item correct responses marked by you in the Response	s. Your total marks will depend only on the number of e Sheet.			
 Before you proceed to mark in the Response She have to fill in some particulars in the Response S and Instructions. 	et the response to various items in the Test Booklet, you heet as per instructions sent to you with your Admit Card			
 While writing Centre, Subject and Roll No. on "ONLY BALL POINT PEN". 	the top of the Response Sheet in appropriate boxes use			
 After you have completed filling in all your res concluded, you should hand over to the Invigilato with you the Test Booklet. 	ponses on the Response Sheet and the examination has r only the Response Sheet. You are permitted to take away			
DO NOT OPEN THIS TEST BOOKLET	'UNTIL YOU ARE ASKED TO DO SO			

ROUGH WORK

TDC-41604-A

1.	The axiomatic definition of probability was proposed by :				
	(A) R.A. Fisher	(B)	Bernoulli		
	(C) Kolmogorov	(D)	Gauss		
2.	If $B \subset A$ then it is true that :				
	(A) $P(B) \leq P(A)$	(B)	P(B) = 1 - P(A)		
	(C) $P(B) > P(A)$	(D)	P(B) = 0		
3.	When three symmetric dice are rolled at a tir	ne the	e chance of getting a sum of the number shown		
	up as 12 will be :				
	(A) 1/8	(B)	25/216		
	(C) 1/12	(D)	8/216		
4.	The probability of an impossible event is :				
	(A) 1/2	(B)	1		
	(C) 0	(D)	0.9973		
5	The probability obtained by Davies theorem	:			
5.	(A) A priori probability	1S:	A hashita muchakilita		
	(A) Apriori probability $(C) = C = \frac{1}{2} $	(B)			
	(C) Conditional probability	(D)	Posterior probability		
6.	If $F(x)$ is a Probability Distribution Function	then	F(+∞) is :		
	(A) 0	(B)	1/2		
	(C) 1	(D)	-1		
7.	If X is a continuous random variable then P	(X = X)	x) =		
	(A) 1	(B)	0		
	(C) 0.5	(D)	Any value between 0 and 1		
8.	In the usual notation $f(x,y)/f(x)$ is called:				
	(A) Conditional density	(B)	Marginal density		
	(C) Joint density	(D)	Cumulative density		
	(-,,	(=)			
9.	If C & K are constants then $V(CX + K) =$				
	(A) $CV(X)$	(B)	V(X) + K		
	(C) $C^2V(X)$	(D)	0		

Downloaded From:http://iasexamportal.com

[Turn over

 $\langle 3 \rangle$

TDC-41604-A

10. The moment generating function of X is equal to :

	(A)	E(e ^{itx})	(B)	E(e ^{tx})		
	(C)	$E(e^{-itx})$	(D)	$E(e^{-tx})$		
11.	The product moment of X and Y is given by :					
	(A)	E(X) + E(Y)	(B)	E(XY) - E(X)E(Y)		
	(C)	E(XY)	(D)	E(XY) + E(X)E(Y)		
12.	If A	and B are any two events and $P(A) = 1$	/4, P((B) = $2/5$ and P(A \cup B) = $1/2$, then P(A \cap B ^c)		
	1S:	1/10				
	(A)	1/10	(B)	4/5		
	(C)	3/10	(D)	3/5		
13.	In th	e usual notation, $P(X=0)$ for Binomial	Distri	bution is :		
	(A)	$(1 - p)^n$	(B)	p ⁿ		
	(C)	1	(D)	p(1 – p)		
1.4			1 .•			
14.	The	coefficient of variation of Poisson Distri	butio	n with mean '1' will be :		
	(A)	$\sqrt{2}$	(B)	1		
	(\mathbf{C})	<u> </u>	(D)	2		
	(C)	$\sqrt{2}$	(D)	2		
15	If X	and V follows Poisson Distribution wit	h me	ans m and m then the distribution of $(X - V)$		
15.	is:			m_1 and m_2 area are distribution of $(X - 1)$		
	(A)	Poisson with mean $(m_1 + m_2)$	(B)	Poisson with mean $(m_1 - m_2)$		
	(C)	Poisson with mean (m_1m_2)	(D)	Not Poisson at all		
		× 1 2 ²				
16.	Adi	screte distribution having memoryless p	roper	ty is :		
	(A)	Binomial	(B)	Hypergeometric		
	(C)	Geometric	(D)	Negative Binomial		
17	Tho	MCE of Doisson distribution with para	notor) ic ·		
17.	(Λ)	$a^{\lambda t-1}$		λ is . $\lambda^{\lambda(e^{t}-1)}$		
	(\mathbf{A})	$\epsilon^{\lambda(e^{it}-1)}$	(D)	$e^{i\lambda(e^t-1)}$		
	(C)	e	(D)	e		
18.	The	variance of continuous uniform distribu	tion b	between 0 & b is :		
	(A)	b ² /2	(B)	b/6		
	(C)	b ² /6	(D)	b ² /12		
тъζ	117	04 4				
IDC	-410	V+-A		\ 1 /		

10	10					
19.	$(A) = \frac{1}{2}$					
	(A)	4	(B)	1/2		
	(C)	$\sqrt{2}$	(D)	2		
20.	The	number of failures before the r th success	in a s	eries of independent Bernoulli trials follows :		
	(A)	Binomial	(B)	Negative Binomial		
	(C)	Geometric	(D)	Uniform		
21.	In th	e usual notation Gamma (1/2) is equal t	0:			
	(A)	1	(B)	π		
	(C)	$\sqrt{\pi}$	(D)	0		
22.	Ina	normal distribution the area covered be	twee	n mean and 2 S.Ds. is :		
	(A)	99.73%	(B)	95%		
	(C)	64.5%	(D)	50%		
22	The	distribution of the sum of a independent	town	nontial variates will be		
23.	(Λ)		(D)	Exponential		
	(A)	Nama	(B)	Exponential		
	(C)	INOITHAI	(D)	Deta		
24.	The	number of parameters in Bivariate norm	al is :			
	(A)	4	(B)	6		
	(C)	5	(D)	2		
25.	The	limiting distribution used in Central Limi	it The	orem is :		
	(A)	Beta	(B)	Normal		
	(C)	Gamma	(D)	Cauchy		
26.	Clas	sification of data according to time beco	omes			
	(A)	Oualitative	(B)	Ouantitative		
	(C)	Geographical	(D)	Chronological		
77	1 1	ass fraguancy divided by total fragments	hoor			
<i>∠1</i> .		Relative frequency	(\mathbf{R})	Frequency density		
	(\mathbf{A})	Cumulative frequency	(D)	Conditional frequency		
	(\mathbf{C})		(D)	Conditional inequency		

TDC-41604-A

5

[Turn over

28. One of the following diagrams is suitable for presenting percentage share of components :

- (A) Bar chart (B) Pie chart
- (C) Line chart (D) Histogram

29. Cumulative frequencies are necessary to draw :

- (A) Histogram (B) Ogive
- (C) Line chart (D) Scatter diagram
- 30. The AM of the values $\{-1, -2, -3, 3, 2, 1\}$ is :
 - (A) 6 (B) 1.5 (C) 0 (D) 2
- 31. In the usual notation the Harmonic Mean is given by :

$$(A) \quad \frac{\sum f_i}{\sum (x_i / f_i)} \qquad (B) \quad \frac{\sum f_i}{\sum (f_i / x_i)} \\ (C) \quad \frac{\sum (f_i / x_i)}{\sum f_i} \qquad (D) \quad \frac{\sum f_i x_i}{\sum f_i}$$

- 32. The standard deviation of $\{2, 2, 2, 2, 2\}$ is :
 - (A) $\sqrt{2}$ (B) 2 (C) 0 (D) 4
- 33. The percentage of data values above the third quartile is :
 - (A) 25% (B) 50%
 - (C) 75% (D) 100%
- 34. For a symmetric distribution, the skewness coefficient is :
 - (A) 1 (B) 3 (C) 0 (D) -1
- 35. If the coefficient of Kurtosis is negative, then the distribution is :
 - (A) Leptokurtic (B) Platykurtic
 - (C) Mesokurtic (D) Any of these
- 36. The chart used to understand the nature of correlation is :
 - (A) Pie chart (B) Ogive
 - (C) Scatter chart (D) Line chart

TDC-41604-A

 $\langle \mathbf{6} \rangle$

- 37. One of the following is only true about correlation coefficient :
- 38. If r = 0.90 then the coefficient determination is :
 - (A) $\sqrt{0.90}$ (B) $(0.90)^2$ (C) 1/0.90 (D) 1 - (0.90)
- 39. In the usual notation the relationship between the regression coefficients and correlation coefficient is :
 - (A) $r = (b_{xy}) (b_{yx})$ (B) $r = \pm \sqrt{b_{xy} b_{yx}}$ (C) (D) $r = \pm \sqrt{\frac{b_{xy}}{b_{yx}}}$
- 40. The coefficient of association between two independent attributes is equal to :
 - (A) 1 (B) -1
 - (C) 0 (D) 0.50

41.	If $X \sim N(\mu, \sigma^2)$ the standard error of $\overline{X} = \sum x / n$ is :						
b _{yx}	(A)	σ^2/n	(B)	σ^2/\sqrt{n}			
·	(C)	σ/\sqrt{n}	(D)	σ/n			

- 42. Test for goodness of fit is based on :
 - (A) t-Distribution (B) Normal Distribution
 - (C) Chi-square distribution (D) F-Distribution

43. For a paired t-test of means with a sample of 20, the degrees of freedom are :

- (A) 18 (B) 19
- (C) 20 (D) None of these
- 44. Student's t-test was proposed by :
 - (A) R.A. Fisher (B) Suedecur
 - (C) Cochran (D) Gosset

TDC-41604-A

r =

 $\langle 7 \rangle$

[Turn over

45.	. The value of skewness for student's t-distribution is :			
	(A) – 1	(B)	1	
	(C) 0	(D)		
46.	For large degrees of freedom the t-distribut	ion ter	nds to :	
	(A) Normal	(B)	Chi-square	
	(C) Log Normal	(D)	None of these	
47.	The relationship between t and F statistics is	5:		
	(A) $t = F/2$	(B)	$t^2 = \sqrt{F}$	
	(C) $t^2 = F$	(D)	t = 1/F	
48.	For a (4×3) contingency table the degrees of	of free	dom for chi-square test of independence, are :	
	(A) 12	(B)	9	
	(C) 8	(D)	6	
49.	In ANOVA the null hypothesis relates to the	comp	parison of :	
	(A) Means	(B)	Variances	
	(C) Proportion	(D)	Standard deviations	
50.	One of the following is not an order statistic	:		
	(A) Maximum	(B)	Mean	
	(C) Minimum	(D)	Median	
51.	Any statistical test is said to be unbiased if f	or tha	t test :	
	(A) Power + Size > 0	(B)	Power + Size < 0	
	(C) Power < Size	(D)	Power > Size	
52.	If $X \sim N(u, \sigma^2)$ and x is the sample size ther	ı a suf	ficient statistic for $\bar{\mathbf{x}}$ is :	
	(A) $(x - x)$	(B)	Σx .	
	(C) $\Sigma(x_i - \bar{x})^2$	(D)	None of these	
52	If t is an actimaton of 0 than Champen Dee?		ality maridae e lawer have dage	
55.	In U_n is an estimator of θ , then Cramer-Rao S			
	$(A) \forall (l_n)$	(D)	$L(l_n)$ Min(t)	
	(C) $\operatorname{IVIAX}(l_n)$	(D)	$\operatorname{IVIII}(\mathfrak{l}_n)$	

TDC-41604-A

 $\langle 8 \rangle$

TDC-41604-A

 $(\overline{\mathbf{x}})^{-1}$

 $\langle 9 \rangle$

[Turn over

< A	TT1 1 .1 'TT	•
67	The hypothesis H	· II \II 10 ·
02.	The hypothesis H,	$\mu / \mu_0 15$.
	J 1	• • ()

(A)	Right sided	(B)	Left sided

(C) Two-sided (D) Any of these

63. The set of values of the test statistic, which support the rejection of Null Hypothesis is called :

- (A) Power (B) LOS
- (C) Critical region (D) Confidence Interval
- 64. The probability of committing type II Error is denoted by :
 - (A) α (B) 1α (C) $1 - \beta$ (D) β
- 65. In the usual notation the one-sample t-test is based on :

(C)
$$t = \frac{x - \mu}{s\sqrt{n}}$$
 (D) $t = \frac{x - \mu}{\sigma\sqrt{n}}$

- 66. For large samples the test for comparing two proportions is based on _____ distribution.
 - (A) Poisson(B) Binomial(C) Standard Normal(D) t

67. For any one-sided Z-test the critical value at 5% level of significance is equal to :

- (A) 1.28 (B) 2.33
- (C) 1.96 (D) 1.645

68. The test for comparing two variances for equality is based on :

(A) χ²-Distribution
 (B) F-Distribution
 (C) Normal Distribution
 (D) t-Distribution

69. For a two sample t-test for means with $n_1 = 12$ and $n_2 = 10$, the degrees of freedom are :

- (A) 12 (B) 10
- (C) 20 (D) 21
- 70. The size of the critical region is known as :
 - (A) Power of test (B) Critical value
 - (C) Level of significance (D) Test range

TDC-41604-A

 $\langle 10 \rangle$

			_	
71.	For	large n, the mean of Wilcoxon's Signed	Rank	test is :
	(A)	n(n+1)/4	(B)	n(n+1)/2
	(C)	n(2n+1)/4	(D)	n(n-1)/2
72.	The	number of runs in the sequence FFFM	MM is	5:
	(A)	6	(B)	1
	(C)	2	(D)	Can't say
73.	Wilc	coxon test is considered as analogous to	:	
	(A)	One-sample t-test	(B)	Two-sample t-test
	(C)	Two-sample F-test	(D)	Goodness of fit test
74.	The	mean of number of runs U in run test is	given	bv E(U) =
	(A)	N +2	(B)	(N+2)/2
	(C)	(N+1)/2	(D)	N/2
75.	The	non-parametric test for goodness of fit	of a di	stribution is :
	(A)	Run test	(B)	Kolmogorov-Smirnov test
	(C)	U-test	(D)	Sign test
76.	Pres	tige bias and self interest of respondent	leads	to:
	(A)	Response error	(B)	Non-response error
	(C)	Grouping error	(D)	Standard error
77.	Sim	ple Random Sampling is applicable whe	n the	population units are :
	(A)	Clustered	(B)	Homogeneous
	(C)	Heterogeneous	(D)	Few in number
78	Con	sider a sample of 'n' drawn from a popul	lation	of size 'N' by simple random sampling Then
, 0.	ther	probability of drawing a specified unit of	the n	onulation is .
	(Δ)	1/n	(\mathbf{R})	1/N
	(Γ)	n/N	(D)	N/n
		10 1 1		1 V 11
79.	In th	e context of sampling the fraction n/N is	scalle	bd:
	(A)	Sampling fraction	(B)	Sampling frame

(C) Sampling ratio (D) None of these

TDC-41604-A

 $\langle 11 \rangle$

[Turn over

- 80. Number of total samples of size n which can be drawn from a population of size N under simple random sampling with replacement is :
 - (A) n/N (B) N^n (C) n^N (D) $\binom{N}{n}$
- 81. The unbiased estimator of population mean Y under stratified sampling is :

(A)
$$\sum \frac{N_h \overline{y}_h}{N}$$
 (B) $\sum \frac{N_h \overline{y}_h}{N}$
(C) $\sum \frac{n_h \overline{y}_h}{N}$ (D) $\sum \frac{n_h \overline{y}_h}{n}$

- 82. In the usual notation one of the following is only true :
 - $\begin{array}{ll} (A) & V_{SRS} \geq V_{PROP} \geq V_{OPT} \\ (C) & V_{SRS} \geq V_{OPT} \geq V_{PROP} \end{array} \end{array}$ $\begin{array}{ll} (B) & V_{OPT} \geq V_{PROP} \geq V_{SRS} \\ (D) & None of the above \end{array}$
- 83. In the usual notation the finite population correction is :
 - (A) $\frac{N-n}{N}$ (B)

84. With SRSWOR from a finite population of size N, the variance of proportion is :

(A)
(B)
$$\left(\frac{N-n}{N+1}\right)\left(\frac{PQ}{n}\right)$$

(C) $\left(\frac{N-n}{N-1}\right)\left(\frac{pq}{n}\right)$
(D) $\left(\frac{N-n}{N-1}\right)\frac{PQ}{n}$

- 85. In systematic sampling with k = N/n, k is called :
 - (A) Sampling interval (B) Sampling frame
 - (C) Sampling size (D) Sampling ratio
- 86. In a two way analysis of variance with 4 treatments, 5 blocks and 3 observations per cell, the error degrees of freedom are :

 $\langle 12 \rangle$

/ . /

- (A) 38 (B) 39
- (C) 40 (D) 41

TDC-41604-A

	87.	A necessary condition for a symmetrical BIBD, assuming the number of treatments as even, is that $(r - \lambda)$ must be :			
		(A)	Perfect Square	(B)	Infinite
		(C)	Positive Integer	(D)	Negative Integer
	88.	The	First census in India was held in :		
		(A)	1827	(B)	1872
		(C)	1892	(D)	1897
	89.	In th	e context of census 2010, NPR stands f	for:	
		(A)	New Population Register	(B)	National Population Register
		(C)	National People Register	(D)	New Population Rolls
	90.	The	statistical test used to compare the mean	ns of t	hree or more independent groups is :
		(A)	Z-test	(B)	Paired t-test
		(C)	ANOVA	(D)	Run Test
	91.	In 3 ³	design the error degrees of freedom wi	ith 5 r	eplicates are :
		(A)	108	(B)	106
		(C)	104	(D)	102
		$\frac{1}{1}$ -2	S principle used to estimate experimental	error	is :
(m n ((li)n(m	(A)	Local control	(B)	Randomization
		(C)	Replication	(D)	Blocking
	93.	Two	way ANOVA is used in the analysis of	:	
		(A)	RBD	(B)	CRD
		(C)	LSD	(D)	All these
	94.	In the	e usual notation the expression for the m	nissin	g value in a m \times m LSD is :
			m(R+C+T)-2S		
		(A)	(m+1)(m-2)	(B)	
		(C)		(D)	

 $\langle 13 \rangle$

[Turn over

95. In the ascending order of efficiency, the following order of basic designs is true :

(A)	CRD, LSD, RBD	(B)	CRD, RBD, LSD
(C)	RBD, CRD, LSD	(D)	RBD, LSD, CRD

96. The error degrees of freedom in a 2^n factorial with r-replicates are :

(B) $r 2^n - 1$ (A) $(r-1)(2^n)$ (C) $(r-1)(2^n+1)$ (D) $(r-1)(2^n-1)$

97. In the usual notation interaction AB in 2^2 factorial design is given by:

(A)	(a + 1) (b - 1)/2	(B)	(a-1)(b+1)/2
(C)	(a-1)(b-1)/2	(D)	(a+1)(b+1)/2

98. In a 2³ design when ABC interaction is confounded, each block contains _____ treatment combinations.

- (A) 8 (B) 2
- (C) 4 (D) 3
- 99. A BIBD is said to be symmetric if:

(A)	b = V and $r > K$	(B)	b = V and $r < K$
(C)	b < V and $r = K$	(D)	b = V and $r = K$

100. In a symmetric BIBD the number of treatments common to any two blocks is :

- (A) λ^2 (B) $(\lambda+1)$ (D) λ/V
- (C) λ

TDC-41604-A

ROUGH WORK

TDC-41604-A

ROUGH WORK

TDC-41604-A