DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2013

Serial No.

CHEMISTRY Code No. 04

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A, B, C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- You have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.
 DO NOT write anything else on the Test Booklet.

Your Roll No.		

- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

EIJ-49853-A

2 △

1.	Ceri	um is a member of:					
	(A)	s-block element	(B)	f-block element			
	(C)	d-block element	(D)	p-block element			
2.	The	The element with electronic configuration 1s ² , 2s ² 2p ⁶ , 3s ² is a/an:					
	(A)	Metal	(B)	Non Metal			
	(C)	Metalloid	(D)	Inert gas			
3.	Which of the following has Noble gas configuration?						
	(A)	La^{2+}	(B)	Ce^{3+}			
	(C)	Ce^{4+}	(D)	$\mathrm{Eu^{2+}}$			
4.	Nob	elium with atomic number 102 has the electron		_			
		$[Rn] 5f^7 6d^7 7s^2$		[Rn] $5f^{10} 6d^4 7s^2$			
	(C)	$[Rn] 5f^{14} 6d^1 7s^1$	(D)	$[Rn] 5f^{14} 6d^0 7s^2$			
5.	Eler	ments of the same group are characterised by:					
	(A)	Ionization potential					
(B) Electron affinity							
	(C)	Same number of electrons in the outer most sh	ell				
	(D)	Electronegativity					
6.	Zr and Hf have similar atomic and ionic radii because of:						
	(A)	Diagonal relationship	(B)	Lanthanide contraction			
	(C)	Both in the same period	(D)	Similar chemical properties			
7.	Whi	ch of the given elements has the highest second	ioniz	zation potential?			
	(A)	O	(B)	N			
	(C)	В	(D)	C			
8. The attraction of an atom for electrons in a bonded molecule is called:							
	(A)	Ionization potential	(B)	Oxidation potential			
	(C)	Electron affinity	(D)	Electronegativity			
9.		terium atom is an of hydrogen atom.					
		Isotope	(B)	Isobar			
	(C)	Isotone	(D)	Isomer			
EIJ.	-498	53-A	<u>3</u> ⋈		[Turn over		

10. Complete the reaction scheme

 ${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + \dots$ choosing one of the following:

(A) ${}^{1}P$

(C) ²H

(D) ${}^{0}_{-1}e$

11. An isobar of $_{20}\text{Ca}^{40}$ is: (A) $_{18}\text{Ar}^{38}$

(C) $_{20}^{10}$ Ca³⁸

12. Which of the following complexes is most stable?

(A) $[M(NH_3)_6]^{2+}$

(B) $[M(H_2O)_6]^{2+}$

(C) $[M(bipyridine)_3]^{2+}$

(D) [M(pyridine)₂]²⁺

13. Which of the following is non polar covalent molecule?

(A) All

(B) CO₂

(C) CCl₄

(D) SiF₄

14. The strong forces operating in diamond structure are:

(A) Hydrophobic

(B) Covalent

(C) Ionic

(D) Coordinate Covalent

15. The central atom in H₂O molecule undergoes the hybridization:

(A) sp

(B) sp^2

(C) dp^2

(D) sp^3

16. In regular trigonal bipyramidal structure the bond angles are:

(A) 180° and 60°

(B) 60° and 60°

(C) 72° and 90°

(D) 120° and 90°

17. The hybridization of Tellurium in TeCl₄ molecule is:

(A) sp^3

(B) sp^3d

(C) dsp^2

(D) d^2sp^3

18. The longest C-H bond distance is in the following molecule:

(A) $C_{2}H_{2}$

(B) $C_2H_2Br_3$

(C) C_2H_6

(D) C_2H_4

19. Oxidation state of 2⁺ of oxygen is observed in:

(A) F_2O

(B) H₂O

(C) H₂O₂

 $(D) O_{2}F_{2}$

EIJ-49853-A

亼

20.	0. In the reduction of $\operatorname{Cr_2O_7}^{2-}$ by Fe^{2+} , the number of electrons involved per atom of chromium is:				
	(A) 3	(B)	5		
	(C) 1	(D)	4		
21	The oxidation state of Iron in Fe(CO) ₅ molecule is	•			
21.	(A) 5^+	· (B)	2^{+}		
	(C) 0	(D)			
22	During oxidation process electrons are				
<i>22</i> .	During oxidation process electrons are: (A) lost	(B)	gained		
	(C) paired up		remains same		
23.	$B_2H_6 + 2NH_3 \xrightarrow{\text{High temperature}} \text{gives the product}$	ct as:			
	(A) Boron nitrate	(B)	Borazole		
	(C) Boric acid	(D)	Borax		
24	Which is the correct order of decreasing acid stren	oth h	alogen group from Cl to L?		
21.	(A) HClO ₃ > HBrO ₃ > HIO ₃		$HIO_3 \simeq HCIO_3 \simeq HBrO_3$		
	(C) $HBrO_3^3 > HClO_3^3 > HIO_3^3$		$HIO_3^3 > HClO_3^3 > HBrO_3^3$		
25	Will of the control o	NII 0			
25.	Which of the following is soluble in excess of NaC		F ₂ (OII)		
	(A) Ni(OH) ₂ (C) Cr(OH) ₃		Fe(OH) ₃ Al(OH) ₂		
	(6) 61(611)3	(D)	11(011)3		
26.	What is the 10 Dq value of $[Ni(CN)_4]^{2-}$ complex ?				
	(A) 120	(B)			
	(C) 24	(D)	4		
27.	Which of the 0.1 M aqueous solution will have the	lowe	st freezing point ?		
	(A) $C_5 H_{10} O_5$	(B)	KI		
	(C) $Al_2(SO_4)_3$	(D)	$C_{12}H_{22}O_{11}$		
28	Silver metal dissolves in a solution of sodium cyani	ide in	the presence of air to form the complex:		
20.	(A) Na[Ag(CN),]		AgCN		
	(C) Na[Ag(CN) $_3$]		AgCl		
20					
<i>2</i> 9.	29. The process of heating the concentrated ore in a limited supply of air or in the absence of air is known as:				
	(A) Roasting	(B)	Leaching		
	(C) Calcination	(D)	Cupellation		
EII	EIJ-49853-A 5 [Turn over				
TI TO	17000 11	$\overline{\square}$	[Turn Over		

30.	0. If the principal quantum number $n = 3$, the magnetic quantum number m can take on values:				
	(A) 3	(B)	9		
	(C) 7	(D)	5		
31.	Which of the following is pella magnetic in low spin	ı state	e?		
	(A) Co^{2+}	(B)	Fe^{2+}		
	(C) Ni^{2+}	(D)	Co ³⁺		
2.2					
32.	$[Co(NH_3)_4Cl_2]NO_2$ and $[Co(NH_3)_4(Cl)(NO_2)]Cl$ a				
	(A) Coordination		Optical		
	(C) Geometrical	(D)	Ionization		
33	$K_3[Al(C_2O_4)_3]$ is called by its IUPAC name as:				
<i>JJ</i> .	(A) Potassium trioxalatoaluminate (iii)	(B)	Potassium trioxalatoaluminium (iii)		
	(C) Potassium trioxalatealumininate (iv)		Potassium Aluminum Oxalate		
	(C) Fotassium moxatateatumininate (iv)	(D)	Fotassium Aiuminum Oxalate		
34.	What is the structure of IF_7 ?				
	(A) Trigonal bipyramidal	(B)	Square pyramidal		
	(C) Pentagonal bipyramidal		Trigonal planar		
		` /			
35.	The EAN of $[Ni(NH_3)_6]^{2^+}$ is:				
	(A) 34	(B)	38		
	(C) 36	(D)	40		
36.	How many number of chlorides will be precipitated with an excess of silver nitrate?		3 2		
	(A) 3	(B)			
	(C) 0	(D)	2		
37.	Which of the following red substances turns black of				
	(A) $\operatorname{Fe_3O_4}$		Pb_3O_4		
	(C) Na_2CrO_4	(D)	NaClO ₄		
38	Which of the halogens will form most hexahalide w	ith cu	lohur ?		
<i>J</i> 0.	(A) Cl	(B)	-		
	(C) F	(D)			
		(D)	Di		
39.	$[Pt(NH_3)_2Cl_2]$ exhibits the isomerism called:				
	(A) Cis-trans	(B)	Linkage		
	(C) Ionization	(D)	Coordination position		
40.	When a reagent $K_4[Fe(CN)_6]$ is added to an aqueo				
	(A) Blood red colouration		Apple green colouration		
	(C) Blue colour precipitate	(D)	Red precipitate		
EIJ	-49853-A	6 △			

- 41. Paul-Knorr synthesis of Pyrroles involves the reaction of NH₃ with:
 - (A) 1, 2-Dicarbonyl Compounds
- (B) 1, 3-Dicarbonyl Compounds
- (C) 1, 4-Dicarbonyl Compounds
- (D) 1,5-Dicarbonyl Compounds
- 42. Which one of the following is the major product in the nitration of Naphthalene?
 - (A) 2-NO₂ naphthalene

(B) 3-NO₂ naphthalene

(C) 6-NO, naphthalene

(D) 1-NO₂ naphthalene

43. $HS - CH_2 - CH - CO_2H$ \mid NH_2

What is the name of this compound?

(A) Serine

(B) Alanine

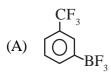
(C) Cysteine

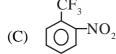
- (D) Glycine
- 44. Which one of the following Vitamins is essential for coagulation of Blood?
 - (A) K

(B) C

(C) A

- (D) B1
- 45. Identify the heterocyclic ring containing amino acid from the following:
 - (A) Valine


(B) Histidine


(C) Leucine

(D) Phenylalanine

46.
$$(NO_2^+)(BF_4^-) \rightarrow z$$

z in the above reaction is:

 $(D) \bigcirc NO_{3}$

This conformation of cyclohexane is called as:

(A) Twist boat

(B) Deformed chair

(C) Chair

(D) Boat

EIJ-49853-A

7 △ [Turn over

48.	Identify Thiosemicarbazide from the following:	(D)	H.V. C. NII. NIII
	(A) H ₂ N–SH	(B)	H ₂ N-C-NH-NH ₂ S
	(C) H - C - NH - NH_2 O	(D)	$H_2N-C-NH-NH_2$
	U		U
49.	Ethylmethylamine exhibits which one of the follow		
	(A) Enantiomerism	` ′	Diastereomerism
	(C) Dynamic enantiomerism	(D)	Geometric isomerism
50.	$Methyl-\alpha-D-glucoside \ and \ Methyl-\beta-D-glucoside$		•
	(A) Epimers		Homomers
	(C) Atropisomers	(D)	Anomers
51.	What is the source of UV radiation?		
	(A) Hydrogen gas discharge lamp	(B)	RFoscillator
	(C) Klystron oscillator	(D)	Nernst Filament
52.	Which transitions are studied by UV spectromete	r?	
	(A) Rotational	(B)	Electronic
	(C) Nuclear	(D)	Vibrational
53.	One nm is equal to:		
	(A) 10^{-5} cm (C) 10^{-7} cm	(B)	10 ⁻⁶ cm 10 ⁻⁸ cm
	(C) 10^{-7} cm	(D)	10^{-8}cm
54.	The structure of sulphur dioxide molecule (SO ₂) r	nay be	given as:
	(A) Tetrahedral		Bent
	(C) Linear	(D)	Plane triangle
55.	Identify the preferred solvent for recording 'H–NI		
	(A) CDCl ₃	(B)	C ₆ H ₆ CHCl ₃
	(C) H ₃ C-C-CH ₃	(D)	CHCl ₃
56.	In $^{\backprime}H-NMR$ the aldehydic proton resonates at δ	(ppm)	value of :
	(A) 1.80		2.50
	(C) 9.80		7.20
57	Which conformation of n-butane has the lowest pe	otentis	al energy ?
J 1 .	(A) Eclipsed		Partially eclipsed
	(C) Gauche	. ,	Anti

8 △

- 58. An SN1 reaction results in:
 - (A) Retention

(B) Racemisation

(C) Inversion

- (D) Elimination
- 59. Among the following which alcohol is most reactive with a hydrogen halide?
 - (A) Ethyl

(B) t-Butyl

(C) Benzyl

- (D) Isopropyl
- 60. $H_3C C \equiv C CH_2 CH_3 \xrightarrow{H_2 \text{ Lindlar catalyst}} z$

Structure of z is:

- (A) $H_3C CH = CH CH_2 CH_3$
- (B) $H_3C CH_2 CH = CH CH_3$
- (C) $H_3C CH_2 CH_2 CH_2 CH_3$
- (D) $H_2C = CH CH_2 CH_2 CH_3$
- 61. Oxidation of 3-pentanol yields:
 - (A) Diethyl ketone

(B) Acetone

(C) Methyl ethyl ketone

- (D) Acetone + Acetic acid
- 62. What is the order of a base catalyzed bimolecular elimination reaction of an alkyl halide?
 - (A) First order

(B) Pseudo first order

(C) Second order

- (D) Zero order
- 63. Identify the product in the addition reaction of HBr to propene in the presence of peroxide:
 - (A) 2-Bromopropane

(B) 1-Bromopropane

(C) 1, 2–Dibromopropane

- (D) 1, 1–Dibromopropane
- 64. 3-Hexene $\xrightarrow{1. O_3}$ product(s)

What are the products in the above reaction?

(A) Acetaldehyde + Butanal

(B) Formaldehyde + Pentanal

(C) Acetone + Butanal

(D) Propanal + Propanal

The configuration of this compound is:

(A) 1R, 2S

(B) 1S, 2R

(C) 1R, 2R

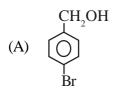
(D) 1S, 2S

66. $3C_6H_6 + CCl_4 \xrightarrow{AlCl_3} Y$

Structure of Y is:

(A) $C_6H_5CCl_3$

(B) $C_6H_5CHCl_7$


 $(C) (C_6H_5)_3CH$

(D) $(C_6H_5)_3C-C1$

EIJ-49853-A

9 ⊠ [Turn over

Identify z from the following:

68. Which one of the following does not give an Iodoform test?

(A)
$$Ph - CH_2 - CH_2 - OH$$

(B)
$$Ph - CH - CH_3$$

(C) H₃C - CH - CH₂ - CH₃

$$\begin{array}{ccc}
OH \\
(D) & H_3C - CH_2 - OH
\end{array}$$

69. Identify succinic acid from the following:

$$\begin{array}{ccc} & & & & & & & \\ \text{CO}_2\text{H} & & & & & \\ \text{CO}_2\text{H} & & & & \\ \end{array}$$

(B)
$$(CH_2)_3$$
 CO_2H

|

70. $H_5C_2 - O - C - O - C_2H_5$. This structure represents which one of the following?

(A) Carbonyl compound

(B) Alkoxide

(C) Ester

(D) Diether

EIJ-49853-A

10 □

71.
$$Ph - C - CH_3 + Ph - CHO \xrightarrow{\Theta_{OH}} z$$

Structure of z is:

- (A) $Ph CO_2H$
- (C) Ph C CH = CH C Ph0 O
- (B) $Ph CH_2OH$
- (D) Ph CH = CH C Ph \parallel O
- 72. The specis formed during the Hofman rearrangement is:
 - $(A) \quad \stackrel{\cdot}{R} C N_2^{-1}$ O

(B) RNCO

(C) $R - C - N_3$

- (D) RCNO
- 73. Which alkyl halide is most reactive in aliphatic SN2 reaction?
 - (A) R-I

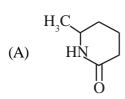
(B) R - Br

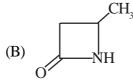
(C) R-Cl

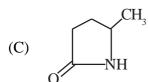
(D) R - F

74.
$$Y + H_2C = CH - CHO \rightarrow \bigcirc$$
 CHO

What is Y in the above reaction?


(A) $H_2C = CH_2$


- (B) $H_2C = CH CH = CH_2$
- (C) $H_2C = CH CH = CH CH_3$
- (D)
- 75. An alkaline solution of cupric ion complexed with tartarate ion is known as:
 - (A) Tollen's reagent


(B) Benedict's reagent

(C) Fehling's reagent

- (D) Bayer's reagent
- 76. $H_2N CH_2 CH CH_2 CO_2H \xrightarrow{\Delta}$ product : CH_2

[Turn over

77. Identify the $n \to \pi^*$ band (nm) of a $\sum = 0$ in the UV spectrum from the following:

(A)
$$\sim 300$$

(B)
$$\sim 200$$

(C)
$$\sim 250$$

78. Appearence of two bands in the region of $3500 - 3300^{\text{cm}^{-1}}$ in IR spectrum is due to which one of the following groups?

$$(A) - NH_2$$

$$\stackrel{\textstyle (B)}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\stackrel{}}}{\stackrel{}{\stackrel{}}{\stackrel{}}} = N-$$

$$(C) - SH$$

$$(D)$$
 $-C1$

79. Identify the Fundamental NMR equation from the following:

$$(A) \gamma B_1 t_n$$

(C)
$$\frac{H_{\circ}V}{2\pi}$$

(D)
$$-\Delta E/kT$$

80. Magnetic anisotropy is shown by which one of the following?

(B)
$$CH_3 - CH_2 - OH$$

(C)
$$H_3C - CH_2 - CH_2 - CI$$

81. Average kinetic energy per molecule is:

(B)
$$\frac{3}{2}$$
RT

(C)
$$\frac{1}{2}$$
kT

(D)
$$\frac{1}{2}$$
RT

82. Rootmean square speed of gas molecule is:

(A)
$$\sqrt{2RT/M}$$

(B)
$$\sqrt{\frac{3RT}{M}}$$

(C)
$$\sqrt{\frac{3RT}{N}}$$

(D)
$$\sqrt{\frac{8RT}{M}}$$

83. For one mole of gas C_p and C_v relations are :

(A)
$$C_P = C_V$$

(B)
$$C_p = C_V - R$$

(D) $C_p = C_V \cdot R$

$$(C) C_{p} = C_{v} + R$$

$$(D) C_{P}^{r} = C_{V} \cdot F$$

-49853-A	13	[Turn over
solution is: (A) 1 (C) 3	(B) (D)	
	10^{-3} a	and its concentration is 0.1 M. The pH of
(C) 1.00	, ,	2.05
2 1	(B)	5.20
(A) 1 × 10 (C) 0.1	(D) (R)	$1 \times 10^{-3} \\ 1.1 \times 10^{-2}$
A is 0.1 M, the initial rate is:		
The units of rate of zero order reaction is: (A) Sec ⁻¹ (C) Mol lit ⁻¹ sec ⁻¹		Mol lit ⁻¹ Mol lit ⁻¹ sec
The half-life of first order reaction is 0.1 sec. The (A) 6.93 sec (C) 69.3 sec	(B)	onstant is: 0.0693 sec ⁻¹ 6.93 sec ⁻¹
 Which of the following is not true for zero order re (A) Rate = Rate constant (B) Rate is independent of concentrations (C) Rate does not change with time (D) Rate increase with increase in concentrations 	action	ns?
Half-life period (t½) is not effected by changing co (A) First order (C) Zero order	(B)	tration of reactants in the reaction of: Second order 0.5 order
The value of P_cV_c/RT_c is: (A) 8.314 (C) 2.000	` '	0.375 0.082
The units of van der Waal's constant 'a' are : (A) Moles/lit (C) lit/mol		Atm litre ² mol ⁻² atmospheres
The compressibility factor for ideal gas is : (A) Zero (C) > 1	(B) (D)	1 < 1
	The units of van der Waal's constant 'a' are: (A) Moles/lit (C) lit/mol The value of $P_c V_c / RT_c$ is: (A) 8.314 (C) 2.000 Half-life period (t½) is not effected by changing co (A) First order (C) Zero order Which of the following is not true for zero order re (A) Rate = Rate constant (B) Rate is independent of concentrations (C) Rate does not change with time (D) Rate increase with increase in concentrations The half-life of first order reaction is 0.1 sec. The (A) 6.93 sec (C) 69.3 sec The units of rate of zero order reaction is: (A) Sec ⁻¹ (C) Mol lit ⁻¹ sec ⁻¹ The rate constant for first order reaction is 0.01 A is 0.1 M, the initial rate is: (A) 1×10^{-2} (C) 0.1 The pH of 0.05M H_2SO_4 solution is: (A) 2.70 (C) 1.00 The dissociation constant of weak acid HA is $1 \times$ solution is: (A) 1 (C) 3	(A) Zero (B) (C) > 1 (D) The units of van der Waal's constant 'a' are : (A) Moles/lit (B) (C) lit/mol (D) The value of P_cV_c/RT_c is : (A) 8.314 (B) (C) 2.000 (D) Half-life period (t!/2) is not effected by changing concent (A) First order (B) (C) Zero order (D) Which of the following is not true for zero order reaction (A) Rate = Rate constant (B) Rate is independent of concentrations (C) Rate does not change with time (D) Rate increase with increase in concentrations The half-life of first order reaction is 0.1 sec. The rate c (A) 6.93 sec (B) (C) 69.3 sec (D) The units of rate of zero order reaction is : (A) Sec ⁻¹ (B) (C) Mol lit ⁻¹ sec ⁻¹ (D) The rate constant for first order reaction is 0.01 sec ⁻¹ A is 0.1 M, the initial rate is : (A) 1×10^{-2} (B) (C) 0.1 (D) The pH of 0.05M H ₂ SO ₄ solution is : (A) 2.70 (B) (C) 1.00 (D) The dissociation constant of weak acid HA is 1×10^{-3} a solution is : (A) 1 (B) (C) 3 (D)

94.	The units of molar conductance are: (A) Sm ² mol ⁻¹ (C) S mol m ²		$S^{-1} m^2 m M^{-1}$ $S^{-1} mol M$
95.	Which of the following ions has highest ionic mobili (A) OH -	ty? (B)	Li ⁺
	(C) Cs ⁺	(D)	H^{+}
96.	The cell in which electrical energy is converted to cl		
	(A) Galvanic cell	` /	Voltaic cell
	(C) Electrolytic cell	(D)	Electrochemical cell
97.	The standard reduction potentials of Zn^{2+}/Zn and Cn^{2+} and Cn^{2+} of cell $Zn \mid Zn^{2+}(0.1M) \mid \mid Cu^{2+}(0.1M) \mid Cu^{2+}$		Cu are $-0.76v$ and $+0.34v$ respectively.
	(A) $+0.42v$	(B)	1.10v
	(C) $-1.10v$	(D)	-0.42v
98.	Arrhenius theory of electrolytic conduction does no	ot app	oly to:
	(A) HCN	(B)	NH ₄ OH
	(C) CH ₃ COOH		KCl
99.	Under Isobaric conditions the heat absorbed by the	syst	tem qp is given by:
	(A) $qp = \Delta H$	•	$qp = \Delta E$
	(C) $qp = \Delta E + \Delta V$	(D)	$qp = \Delta E - P\Delta V$
100.	C_p and C_v relation for He gas is:		
	$(A) C_p > C_v$	(B)	$C_p = C_v$
	$(C) C_p = C_V + R$	(D)	$C_{p} = C_{v} + 2R$
101.	. In isothermal expansion of gases, which of the follo	wing	g is zero ?
	(A) q (heat absorbed)	(B)	
	(C) ΔE	(D)	ΔV
102	. Which of the following gases warmed up in adiabat	ic ex	pansion?
	(A) O_2		N_2
	(C) Ne		H_2^2
103	. The ΔE and ΔH relation for the reaction		
	$C_6H_6(\ell) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(\ell)$ is	:	
	(A) $\Delta H = \Delta E - 1.5 RT$		$\Delta H = \Delta E + 1.5 RT$
	(C) $\Delta H = \Delta E + \frac{1}{2}RT$	(D)	$\Delta H = \Delta E$

104.	04. Which of the following is true for spontaneous process?			
		$\Delta G = + ve$		$\Delta G = -ve$
	(C)	$\Delta G = 0$	(D)	$\Delta G = \Delta S = \Delta H = 0$
105.	The	number of degrees of freedom at triple point ir	1 H ₂ C) system are :
	(A)		(B)	
	(C)	2	(D)	3
106.	The	phase rule for condensed systems (Ex : Pb-Ag	-	
		F = C - P + 2	, ,	F = C - P + 1
	(C)	F = C - P + 3	(D)	F = C + P - 1
107.	Gels	s are :		
		solids dispersed in solid	(B)	solids dispersed in gas
	(C)	solids dispersed in liquid	(D)	Liquids dispersed in solids
108.	High	nest flocculation value exhibited for Fe(OH) ₃ so	lutio	n is:
	` ′	KCl		$K_2Cr_2O_4$
	(C)	$K_3[Fe(CN)_6]$	(D)	BaCl ₂
109.	. Tync	dall effect is shown by:		
		Ideal solutions		AgCl suspension
	(C)	Starch solution	(D)	$K_2Cr_2O_7$ solution
110.		talyst is:		
		Consumed in reaction	` ′	Produced in reaction
	(C)	Not affected in reaction	(D)	Undergoes chemical change
111.		auto catalytic reaction, the rate of reaction:		
	` ′	Increase with time		Not affected with time
	(C)	Decrease with time	(D)	Can't be predicted
112.		$(C_2H_5)_4$ in petrol acts as:		
		Catalyst	` /	Promoter
	(C)	Activator	(D)	Inhibitor
113.	The	distribution coefficient expression for distribu	tion (of Benzoic acid in Benzene and water is
	obta	ined experimentally as $K = \sqrt{C_{Benzene}}/C_{Water}$,	the r	molecular state of Benzoic acid is:
	(A)	Dimer in Benzene	(B)	Monomer in Benzene
	(C)	Dissociated in Benzene	(D)	Dimer in Water
114.	Ate	quilibrium the free energy change (ΔG) is :		
	(A)		` ′	– ve
	(C)	+ve	(D)	infinity
EIJ.	-4985	53-A	15 □	[Turn over

		ording to Lechateliar principle the reaction in ibrium the forward reaction is favoured when:	n the	$2 \operatorname{NO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{NO}_2(g) + \text{heat}$
	-	High T and High P	(B)	Low T and Low P
		Low T and High P		High T only
116.		ch of the following is not colligative property?		
	(A)	Relative lowering of VP	(B)	Elevation of BP
	(C)	Osmotic pressure	(D)	Freezing point
117.	Whic	ch of the following solution has largest osmotic	pres	sure ?
	(A)	0.1M Glucose	(B)	0.11M Urea
	(C)	$0.1 \mathrm{M BaCl}_2$	(D)	0.1 M KCl
118.	Two	isotonic solutions will have same :		
	(A)	Vapour pressure	(B)	Boiling point
	(C)	Freezing point	(D)	Osmotic pressure
119.	Ano	n-volatile solid is added to water. Its freezing p	oint v	vill:
	(A)	Increase	(B)	Decrease
	(C)	No change	(D)	Can't be predicted
120.	Sea v	water can be converted into fresh water by:		
	(A)	Osmosis	(B)	Sedimentation
	(C)	Diffusion	(D)	Reverse Osmosis

ROUGH WORK

ROUGH WORK

ROUGH WORK