DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 2013

Serial No.

PHYSICS
Code No. 16

Time Allowed: Two Hours

Maximum Marks: 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES **A, B, C OR D** AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE RESPONSE SHEET.
- You have to enter your Roll Number on this
 Test Booklet in the Box provided alongside.
 DO NOT write anything else on the Test Booklet.

Your Roll No.	

- 4. This Booklet contains 120 items (questions). Each item comprises *four* responses (answers). You will select *one* response which you want to mark on the Response Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. In case you find any discrepancy in this test booklet in any question(s) or the Responses, a written representation explaining the details of such alleged discrepancy, be submitted within three days, indicating the Question No(s) and the Test Booklet Series, in which the discrepancy is alleged. Representation not received within time shall not be entertained at all.
- 6. You have to mark all your responses ONLY on the separate Response Sheet provided. *See directions in the Response Sheet*.
- 7. All items carry equal marks. Attempt ALL items. Your total marks will depend only on the number of correct responses marked by you in the Response Sheet.
- 8. Before you proceed to mark in the Response Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Response Sheet as per instructions sent to you with your Admit Card and Instructions.
- 9. While writing Centre, Subject and Roll No. on the top of the Response Sheet in appropriate boxes use "ONLY BALL POINT PEN".
- 10. After you have completed filling in all your responses on the Response Sheet and the examination has concluded, you should hand over to the Invigilator only the Response Sheet. You are permitted to take away with you the Test Booklet.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ROUGH WORK

FII	-49864- A	137	Turn over					
	(C) 6.0Å	(D)	2.0 Å					
	(A) 1.0 Å	(B)	4.5 Å					
9.	The radius of first orbit in the hydrogen atom is 0.5	Å, tl	ne radius of the third orbit is:					
	(C) atom bomb	(D)	nuclear reactor					
	(A) proton bomb	, ,	hydrogen bomb					
8.	Uncontrolled fission chain reaction is the principle							
	(C) 68 J	` /	98 J					
	(A) 66 J	(B)	75 J					
7.	A block of mass 50 kg slides over a horizontal dista The work done against the friction is:	nce o	f 1 m and the coefficient of friction is 0.2.					
_								
	(C) 255.4 W	(D)	81.6 W					
	(A) 313.6 W	(B)	420.5 W					
6.	A man weighing 60 kg carrying 20 kg bag climbs power of the man is:	5 20 S	teps each of 20 cm neight in 10 sec. The					
6	A man waighing 60 kg garming 20 kg hag alimbe	20 a	tons each of 20 am haight in 10 see. The					
	(C) both (A) and (B)	(D)	none					
	(A) inelastic	(B)	elastic					
5.	The total momentum of two colliding bodies remain	1S COI	nstant if the collision is:					
	(C) 3 m/s	(D)	3 111/8					
	(A) 4 m/s (C) 5 m/s	` ′	2 m/s 3 m/s					
4.	50 g bullet is fired from a 10 kg gun with a speed o		· ·					
4	50 1 11 6 16 101 1	C 400	/ [77]					
	(C) 50.4 kg	(D)	58 kg					
	(A) 50 kg	(B)	60.2 kg					
	would be:	81	, , , <u>, , , , , , , , , , , , , , , , </u>					
3.	A person weighing 50 kg is standing in a lift movi	ng iir	with an acceleration 2 m/s ² . His weight					
	(C) 15 m	(D)	$20 \times 10^{-15} \text{ m}$					
	(A) 1.5×10^{-31} m	` ′	$3.0 \times 10^{-35} \mathrm{m}$					
	particle is ($h = 6.6 \times 10^{-34} \text{Js}$):							
2.	A particle of mass 2.2 g is traveling with a velocity	of 2	m/s. The wavelength associated with the					
	(C) Density	(D)	Work					
	(A) Pressure	, ,	Force					
1.	Energy per unit volume is dimensionally equal to:							
_								

10.). Asbestos sheets on roof tops will be blown away in cyclonic winds. This is explained by :			
	(A) Snell's law	(B)	Stoke's law	
	(C) Bernoulli's theorem	(D)	Stefen's theorem	
11.	A body falling through a liquid acquires a steady ve	elocity	y called as :	
	(A) end velocity	(B)	touch down velocity	
	(C) terminal velocity	(D)	steady state velocity	
12.	A soap bubble of 10 cm radius is blown from water done is:	er of s	urface tension 30 dynes/cm. The work	
	(A) $70.5 \times 10^3 \text{ erg}$	(B)	$75.4 \times 10^3 \text{ erg}$	
	(C) $69.7 \times 10^3 \text{ erg}$	(D)	$80.5 \times 10^3 \text{ erg}$	
13.	The height of a geo-stationary satellite above the e	arth s	urface is :	
	(A) 36,000 km	(B)	3,000 km	
	(C) 20,000 km	(D)	16,000 km	
14.	A thin film of water with 0.05 mm thickness is in beach. Surface tension of water is 70 dyne/cm, ther	the f	force required to separate the glasses is:	
	(A) 39×10^5 dyne	. ,	28×10 ⁵ dyne	
	(C) 19×10^5 dyne	(D)	40×10^5 dyne	
15.	The escape velocity for a body on the earth is 11. 4 times, then the escape velocity would be:	2 km	s. If the radius of the earth is increased	
	(A) 44.8 km/s	(B)	33.8 km/s	
	(C) 25.7 km/s	(D)	22.4 km/s	
16.	The ratio of value of g on earth to that of moon is 6 the surface of moon is:	: 1. T	The time period of seconds pendulum on	
	(A) 6.8 s	(B)	7.8 s	
	(C) 4.8 s	(D)	5.8 s	
17.	The value of g is 980 cm/s^2 . If the unit of length is to the value of g becomes :	aken a	as 1 km and unit of time as 1 minute, then	
	(A) 35.3 km/min ²	(B)	36.2 km/min ²	
	(C) 30.3 km/min ²	(D)	980 km/min ²	
18.	The energy equivalent of one milligram of mass in o	ergs is	::	
	(A) 9×10^{18}	(B)	9×10^{19}	
	(C) 9×10^{17}	(D)	6×10^{20}	
	400.64	<u>~</u>		

19.	Lorentz transformation equation is reduced to Galil velocity between two frames of reference is:	ean tr	ransformation equation when the relative
	(A) very small	(B)	very large
	(C) zero	(D)	infinity
20.	A stone is thrown up vertically by a man and it fell is of the stone is $(g = 9.8 \text{ m/s}^2)$:		•
	(A) $9.8 \mathrm{m/s}$	(B)	14.7 m/s
	(C) $19.6 \mathrm{m/s}$	(D)	$4.9\mathrm{m/s}$
21.	A person standing on a turntable is stretching his h to his body then:	ands	and he suddenly folds his hands close
	(A) linear momentum increases	(B)	angular velocity decreases
	(C) linear momentum decreases	(D)	angular velocity increases
22.	The physical quantity analogous to mass in circular	moti	on is:
	(A) moment of inertia	(B)	force
	(C) weight	(D)	angular velocity
23.	The mass of a rotating body is M, moment of inertia	a I, tł	nen its radius of gyration K is:
	(A) $K = \sqrt{\frac{1}{M}}$		$K = \sqrt{\frac{M}{I}}$
	(C) $K=MI$	(D)	$K = \sqrt{MI}$
24.	50 revolutions per second are equal to:		
	(A) 50 rad./s	(B)	$50 \pi \text{rad./s}$
	(C) 314 rad./s	(D)	620 rad./s
25.	A stone of mass 2 kg strikes the ground with a K.E. (neglect frictional force) $(g = 9.8 \text{ m/s}^2)$:	of 40	00 J. The height from where it is dropped
	(A) 40.6 m	(B)	20.4 m
	(C) 30.8 m	(D)	19.8 m
26.	Oil flows through a pipe of 8 cm in diameter at an a is:	verag	ge velocity of 4 m/s. The amount of flow
	(A) $3.2 \mathrm{m}^3/\mathrm{s}$	(B)	$0.032 \text{m}^3/\text{s}$
	(C) $0.02 \mathrm{m}^3/\mathrm{s}$	(D)	$0.04 \text{ m}^3/\text{s}$

- 27. A torque τ rotates a body through an angle θ . The work done is :
 - (A) $W = \tau \theta$

(B) $W = \frac{T}{\theta}$

(C) $W = \frac{\tau^2}{\theta}$

- (D) $W = \tau^2 \theta$
- 28. Newton's second law of motion in case of a variable mass system can be written as (where M = total mass U, V, initial and final velocities):
 - (A) $F = M \frac{dV}{dt} U \frac{dM}{dt}$

(B) $F = \frac{d}{dt}(MV) - U\frac{dM}{dt}$

(C) $F = U \frac{dM}{dt} - \frac{d}{dt}(MV)$

- (D) F = M(V-U)
- 29. A car engine develops 75 KW power when rotating at a speed of 1000 rpm. The torque of the engine (in $g.cm^2\,s^{-1}$) is :
 - (A) 825

(B) 750

(C) 716

- (D) 520
- 30. When two bodies traveling with velocities v and u undergo perfectly inelastic collision, then their relative velocity is:
 - (A) v-u

(B) $v^2 - u^2$

(C) zero

- (D) $\frac{v}{u}$
- 31. A particle is executing SHM. Its amplitude is 10 cm and time period is 2 sec. Find its maximum velocity.
 - (A) $20 \, \text{cm/s}$

(B) 40.4 cm/s

(C) 31.4 cm/s

- (D) 36.8 cm/s
- 32. The length of a closed pipe is l and the wavelength of fundamental note emitted is λ , then the wavelengths of 1^{st} , 2^{nd} and 3^{rd} overtones are :
 - (A) $\frac{4l}{3}, \frac{4l}{5}, \frac{4l}{7}$

(B) $\frac{2l}{3}, \frac{2l}{5}, \frac{2l}{7}$

(C) $\frac{l}{3}, \frac{l}{5}, \frac{l}{7}$

(D) l, 3l, 5l

33.	33. The velocity of sound at 0°C is 320 cm/s. The temperature at which the velocity of sound becomes double :			
	(A)	640°C	(B)	819 ℃
	(C)	160°C	(D)	1320 ℃
34.	480	o tuning forks when sounded together give 6 l Hz. The other fork is loaded with wax, the no and fork is:		- · · · · · · · · · · · · · · · · · · ·
	(A)	486 Hz	(B)	474 Hz
	(C)	468 Hz	(D)	492 Hz
35.	The of so	ack and car are moving in opposite directions of truck blows a horn of 500 Hz and the frequency and is 340 m/s):	ncy of	
	, ,	575 Hz	` ′	600 Hz
	(C)	3/3 HZ	(D)	000 HZ
36.	If the	e tension in a stretched string is increased 300	0%, the	en the increase in its frequency:
	(A)	increases $\sqrt{3}$ times	(B)	increases 3 times
	(C)	increases 9 times	(D)	doesn't depend on the tension
37.	The	equation of a transverse wave in a stretched	string i	s given by $y = 5 \sin 2\Pi \left(\frac{t}{0.04} - \frac{x}{50} \right)$. The
		city of the wave is:	~	1070
	` ′	0.04 cm/s	` ′	1250 cm/s
	(C)	100 cm/s	(D)	650 cm/s
38.		od of length 5 cm is clamped at the middle and is 330 cm/s):	l vibrat	ed, then its frequency is (velocity of
	(A)	65 Hz	(B)	330 Hz
	(C)	33 Hz	(D)	16.5 Hz
39.	The	waves used in SONAR are:		
	(A)	radio waves	(B)	ultrasonic waves
	(C)	microwaves	(D)	X-rays
40.		shortest wavelength of ultrasonic waves emitted by it (velocity of sound is 330 cm):	itted by	bats is 0.33 cm. The height frequency
	(A)	$10^2 \mathrm{Hz}$	(B)	$10^3 \mathrm{Hz}$
	(C)	$10^4 \mathrm{Hz}$	(D)	10 ⁵ Hz
EIJ	-4980	64-A	٤73	Turn over

41.	. The rays which form image without any aberrations are:			
	(A) marginal rays	(B)	paraxial rays	
	(C) both marginal and par	raxial rays (D)	none of the above	
42.	The radius of curvatures of the material is 1.5. The foc		5 cm, –25 cm and the refractive index of	
	(A) 15 cm	(B)	25 cm	
	(C) 50 cm	(D)	60 cm	
43.	The planes having unit posi	itive angular magnification are	e called:	
	(A) principal planes	(B)	nodal planes	
	(C) focal planes	(D)	central planes	
44.	A conversing and a diverg apart. The power of the co	_	are placed co-axially in air at 5 cm	
	(A) 10	(B)	5	
	(C) 2	(D)	20	
45.			power $\omega = 0.02$ is in contact with another s achromatic doublet, then the other lens	
	(A) convex lens of 60 cm	focal length (B)	concave lens of 60 cm focal length	
	(C) concave lens of 20 cm	n focal length (D)	convex lens of 20 cm focal length	
46.	When parallel rays are incidifferent foci. This is called		arginal rays and paraxial rays meet at	
	(A) coma	(B)	astigmatism	
	(C) spherical aberration	(D)	chromatic aberration	
47.	The eyepieces which are u	sed in measuring the size of t	he image are :	
	(A) Huygen's	(B)	Ramsden	
	(C) Both	(D)	None	
48.	The velocity of light in air in water:	is 3×10^8 m/s. If it travels in w	vater of $\mu = 4/3$, then the velocity of light	
	(A) $4 \times 10^8 \text{m/s}$	(B)	$2.25 \times 10^8 \text{m/s}$	
	(C) $3.25 \times 10^8 \text{ m/s}$	(D)	$1.25 \times 10^8 \text{m/s}$	
EIJ	-49864-A	₹₹}	Σ	

49.	9. Two parallel slits of 0.3 cm apart are illuminated with a source of light of wavelength $5900\mathrm{A}^\circ$. Fringes are observed at 30 cm away from the slits. The fringe width is :			
	(A) 0.0059 cm		(B)	0.0059 mm
	(C) 0.009 cm		(D)	0.003 cm
50.	Colours exhibited by soa	np bubble and oil floating o	n wa	ter is explained by:
	(A) diffraction		(B)	interference
	(C) polarization		(D)	reflection
51.		er with light source of wav	-	path of one of the interfering beams of gth 4800 Å. Then 500 dark fringes shift
	(A) 1.50 mm		(B)	0.5 mm
	(C) 0.12 mm		(D)	0.24 mm
52.	In Fraunhofer diffraction	the wavefronts are:		
	(A) Plane		(B)	Spherical
	(C) Cylindrical		(D)	Elliptical
53.	The rate of variation of the	ne angle of diffraction (θ) w	ith tl	ne wavelength dθ/dλ is:
	(A) dispersive power of	grating	(B)	resolving power of grating
	(C) magnification power	r of grating	(D)	none
54.	λ_1, λ_2 are two wavelength is:	ns that are just resolved, λ is	s the	mean wavelength, then resolving power
	(A) $\frac{\lambda}{d\lambda}$		(B)	$\frac{\lambda_1 + \lambda_2}{d\lambda}$
	(C)		(D)	$\frac{d\lambda}{\lambda}$
55.	The path difference betw	veen the ordinary and extra	-ordi	nary ray in quarterwave plate is:
	(A) $\frac{2\lambda}{3}$		(B)	$\frac{\lambda}{4}$
	(C) $\frac{3\lambda}{4}$		(D)	$\frac{\lambda}{3}$
EIJ	-49864-A	Σ	9 >	[Turn over

56.	6. When elliptically polarized light is incident on a rotating Nicol prism the brightness in the field view changes between:		
	(A) maximum and minimum	(B)	maximum and zero
	(C) minimum to zero	(D)	no change in brightness
57.	The antistoke lines in Raman effect have waveleng	gth :	
	(A) greater than that of incident light	(B)	equal to that of incident light
	(C) less than that of incident light	(D)	none
58.	To induce laser action in active medium, the system	m shou	uld have :
	(A) minimum two energy levels	(B)	minimum three energy levels
	(C) maximum three energy levels	(D)	none of the above
59.	The rays used in bloodless surgery:		
	(A) X-rays	(B)	γ-rays
	(C) Laser	(D)	Cathode rays
60.	The state of polarization of the ordinary and extra- crystal is:	ordina	ry rays coming out of a doubly refracting
	(A) partially polarized	(B)	plane polarized
	(C) circularly polarized	(D)	elliptically polarized
61.	The wavelengths of sodium D lines are 5890 Å a grating to resolve them in the first order:	and 58	96 Å. Minimum number of lines on the
	(A) 982	(B)	987
	(C) 896	(D)	589
62.	If P is pressure, V is volume and γ is the ratio of to is related:	wo spe	ecific heats of gas, then the relation PV^{γ}
	(A) isothermal change	(B)	adiabatic change
	(C) both isothermal and adiabatic change	(D)	none of the above
63.	If dQ is the amount of heat supplied and dW is the	e work	done, then in isothermal process:
	(A) $dQ + dW = 0$	(B)	
	(C)	(D)	$dW = \sqrt{dQ}$
64.	A reversible heat engine is made to work first be and –200 °C. Its efficiency is :	etweer	a 200 °C and 0 °C and then between 0°C
	(A) more between 0 °C and -200 °C	(B)	more between 200 °C and 0 °C
	(C) same in both ranges	(D)	none of the above
EIJ	-49864-A	Σ <u>10</u> 3	S

65.	The	entropy of a reversible cycle is:		
	(A)	infinity	(B)	zero
	(C)	intermediate	(D)	not stable
66.	A de	ecrease in the Helmholtz function of a system	is equa	al to:
	(A)	change in temperature	(B)	external work done
	(C)	change in internal energy	(D)	all the above
67.	In a	gas the transport of momentum gives rise to the	ne phe	enomenon of:
	(A)	viscosity	(B)	conduction
	(C)	diffusion	(D)	volume
68.	Van	der Waal's gas equation is obeyed by:		
	(A)	ideal gases	(B)	real gases
	(C)	both ideal and real gas	(D)	none
69.		e-Thomson effect is related to:		
		adiabatic compression		adiabatic expansion
	(C)	isothermal expansion	(D)	isothermal compression
70.		e phase of the matter changes without change	in ten	nperature it is a:
	(A)	first order phase change	(B)	second order phase change
	(C)	third order phase change	(D)	none
71.	The is:	specific heat of a solid is 5 cal/g/°C. Then he	at requ	uired to raise its temperature by 20 °C
	(A)	150 cal	(B)	25 cal
	, ,	100 cal	` '	15 cal
72.		ratio of specific heats of a gas is 1.4. Its specifical value of universal gas constant is:	c heat	at constant volume is 4.96 kcal/°K. Then
	(A)	1.894	(B)	1.489
	(C)	1.84	(D)	1.984
73.	P, T	are ρ are the pressure, absolute temperature a	and de	ensity of an ideal gas, then:
	(A)	$\frac{PT}{\rho}$ = constant	(B)	$\frac{P\rho}{T}$ = constant
	(C)	$PT\rho = \text{constant}$	(D)	= constant
EIJ	-4980	64-A	ξ 11 3	Turn over

74.	4. For the system of diatomic gas the number of degrees of freedom are:			
	(A)	2	(B)	4
	(C)	5	(D)	6
75.	The	mean K.E. of a gas molecule at T°K is given b	y the	e equation :
	(4)	1,,,	(D)	3 _{kT}
	(A)	$\frac{1}{2}^{\kappa_I}$	(B)	$\frac{3}{2}kT$
	(C)	$\frac{1}{2}kT$ $\frac{2}{3}kT$	(D)	2 <i>kT</i>
76.		densities of two gases are in the ratio of 1:4.7 ratio:	Γhe n	nean free paths of the molecules are in
	(A)	1:4	(B)	4:1
	(C)	2:1	(D)	1:2
77.	The	absorptive power of a black body at all wavele	ength	s is:
	(A)	zero	(B)	infinity
	(C)	1	(D)	$\frac{1}{2}$
78.	At a	given temperature the ratio of emissivity of a b	ody	to its absorptivity is equal to:
	(A)	absorptivity of black body	(B)	emissivity of black body
	(C)	permittivity of a body	(D)	none
79.	Acc	ording to Planck's hypothesis, the harmonic os	cillati	ions in a black body emit radiation:
	(A)	continuously	(B)	discretely
	(C)	either continuously or discretely	(D)	none
80.	The	absolute temperature of an ideal gas is a measu	ure of	fits:
		translational K.E.		vibrational energy
	` '	total energy	` ′	potential energy
81	Α σα	as does 5 J of work while expanding adiabatical	lv Tl	he change in internal energy is:
01.	(A)		-	−5 J
	` ′	–15 J		−10 J

82.	A charge of 2 coulombs is kept in an electric field of it is:	of inte	ensity 4 N/C. The force experienced by
	(A) 8 N	(B)	4 N
	(C) zero	(D)	2 N
83.	The potential of the earth is:		
	(A) infinity	(B)	zero
	(C) 1	(D)	varies with location
84.	The force between two equal charges is F. If the charges is made 4 times greater, then the force between		
	(A) 16 F	(B)	4 F
	(C) 2 F	(D)	F
85.	In a coil of 3 turns the magnetic flux changes from z induced emf is:	zero to	0.25×10^{-7} Weber in 2.5 milliseconds. The
	$(A) 10 \mathrm{mV}$	(B)	1 mV
	(C) 3 mV	(D)	2.5 mV
86.	Three capacitors of capacities 1 μ F, 2 μ F, 3 μ F are in series and first is in parallel. The resultant capacit		
	(A) $1.1 \mu F$	(B)	2.2 μF
	(C) 3.3 µF	(D)	4.4 μF
87.	A dielectric material of 4 mm thickness is kept betw moved 3.2 mm away to restore the original capacit		<u> </u>
	(A) 3.2	(B)	5
	(C) 6.4	(D)	8
88.	$2\ \Omega$ and $3\ \Omega$ resistances are connected with a celesistors respectively are :	ll of e	emf 6 V. The potential drops across the
	(A) 3.6 V, 2.4 V	(B)	3 V, 3 V
	(C) 2.4 V, 3.6 V	(D)	2.6 V, 3.4 V
89.	In a closed loop if i is the current through a resistar	ice R	and E is the emf then:
	(A) $\sum iR = \sum E$	(B)	$\sum iE = \sum R$
	(C) $\sum R = \sum E$	(D)	$\sum iRE = 0$

90.	The intensity of magnetic induction at a point due to a current carrying conductor is B. If the current is doubled and distance is also doubled, then the induction is:						
	(A)	4 B	(B)	2 B			
	(C)	В	(D)	B/2			
91.		e self inductance of the coil of wire of 600 turns is:	rns is 108	mH. The self inductance of the coil with			
	(A)	90 mH	(B)	100 mH			
	(C)	110 mH	(D)	115 mH			
92.		inductance of 1 Henry and negligible resista The current in it is:	ance is co	onnected to an ac source of 200 V and 50			
	(A)	200 A	(B)	4.6 A			
	(C)	6.4 A	(D)	0.64 A			
93.	If Lo	CR series circuit is connected to ac source	across ca	apacitor:			
	(A)	current leads voltage by $\pi/2$	(B)	voltage leads current by $\pi/2$			
	(C)	current and voltage are in phase	(D)	current leads voltage by π			
94.		LCR series ac circuit has the values of the reactive reactance 100Ω , then the total imped		-			
	(A)	200 Ω	(B)	400Ω			
	(C)	500 Ω	(D)	800Ω			
95.	In ar	n electromagnetic wave, the cross product of	of electric	field E and magnetic field B gives:			
	(A)	amplitude	(B)	frequency			
	(C)	velocity	(D)	direction of travel			
96.	_	article of charge 2 coulombs is passing pan/s. The force on particle is :	rallel in a	a magnetic field 4 Tesla with a velocity			
	(A)	40 N	(B)	4 N			
	(C)	zero	(D)	8 N			
97.		A Van de Graff generator produces a potential difference of 4.8×10^6 volt. If it is used to accelerate a deuterium nucleus, the energy of the nucleus is:					
	(A)	9.6 MeV	(B)	4.8 MeV			
	(C)	6.8 MeV	(D)	2.4 Me V			
EI.I	-4986	64-A	Σ143				

EI.I.	-4986	64-A	Σ153	Turn over						
	(C)	both continuous and characteristic	(D)	none						
		continuous X-rays		characteristic X-ray						
106. When cathode rays are scattered by a target material then the X-rays produced are:										
	(C)	6.8 eV	(D)	−3.4 eV						
	` ′	-6.8 eV		-1.5 eV						
		tron in second orbit is:	(P)	1.5 X						
105		energy of an electron in the first orbit in hydro	ogen	atom is $-13.6 \mathrm{eV}$ and the energy of the						
		ferromagnetism		ferrimagnetism						
		diamagnetism	(B)	paramagnetism						
104. Domain theory explains about the:										
	(C)	zero	(D)	>1						
	. ,	infinity	` ′	< 1						
103	. The permeability of a paramagnetic material is numerically:									
	` /		. ,							
		ferromagnetic material		ferrimagnetic material						
		diamagnetic material		paramagnetic material						
102	. The	magnetic moment of a substance is zero. There	n it is :	a :						
	(C)	240 V	(D)	200 V						
	. ,	170 V	` ′	60 V						
		erence nearly is:								
101	1. The rms value of potential difference in a circuit is 120 V. Then the maximum value of potential									
	(D)	voltage across the conductor								
	` ′	thickness of a conductor voltage across the conductor								
		(B) type of the majority charges in a conductor								
		charge in a conductor								
100		Hall effect can be used to determine:								
	, ,	•	, ,	• •						
	` ′	α-particles	` ′	elementary particles						
,,,		neutrons		electrons						
99.	The	The particles that are accelerated to high energies in betatron are:								
	(C)	$4169 \times 10^7 \text{m/s}$	(D)	$3896 \times 10^7 \text{m/s}$						
	` /	$2161 \times 10^7 \text{ m/s}$	` /	$7502 \times 10^7 \text{ m/s}$						
		of proton is 9600 esu/g. Then the velocity of the								
98.	In a cyclotron, the radius of the dees is 15 cm and the magnetic field applied is 1500 gauss. The									

107. A light of wavelength 3000 Å is incident on a photometer. The value of its work function approximately is (h = 6.6×10^{-34} J.s, c = 3×10^{8} m/s ²):							
(A)	0 eV	(B)	4.11 eV				
(C)	6.2 eV	(D)	3.2 eV				
108. Compton effect is experimentally observed for:							
(A)	visible	(B)	ultravoilet				
(C)	X-rays	(D)	γ-rays				
109. The	matter waves associated with a particle can tr	avel :					
(A)	with the velocity of sound	(B)	faster than light waves				
(C)	travel slower than sound waves	(D)	none of the above				
110. Tunnel effect explains:							
(A)	α-decay	(B)	β-decay				
(C)	gamma-decay	(D)	all the above				
	11. The mass defect in formation of a nucleus having 6 nucleons is 0.012 amu. The average binding energy (in MeV) is $(1 \text{ amu} = 931 \text{ MeV})$:						
(A)	0.02×10^{-3}	(B)	1.86×10^{-3}				
(C)	1862×10 ⁻³	(D)	1862				
112. Am	112. Among the elementary particles heavy particles are:						
(A)	leptons	(B)	baryons				
(C)	mesons	(D)	photons				
113. The catalyst in the carbon nitrogen cycle of fusion:							
(A)	nitrogen	(B)	carbon				
(C)	oxygen	(D)	helium				
114. In a	114. In a full-wave rectifier, the input frequency is 50 Hz, the output frequency of the rectifier is:						
(A)	50 Hz	(B)	100 Hz				
(C)	25 Hz	(D)	200 Hz				
115. A tank circuit:							
(A)	produces electromagnetic oscillations	(B)	amplifies signals				
(C)	rectifies the signals	(D)	all the above				
EIJ-498	64-A	Σ <u>16</u> 3	X				

116.	6. The part that is used to control the flow of electrons in a triode is:					
	(A)	plate	(B)	filament		
	(C)	grid	(D)	cathode		
117.	7. Boron is doped into a pure semiconductor material. The resulting material is:					
	(A)	p-type	(B)	p-n type		
	(C)	n-type	(D)	insulator		
118.	18. The depletion region of p-n junction diode contains:					
	(A)	electrons	(B)	holes		
	(C)	no charge carriers	(D)	both holes and electrons		
119. In a pnp transistor, the p-n junction is forward biased, in npn transistor the n-p junction is						
	(A)	forward biased	(B)	reverse biased		
	(C)	not biased	(D)	either forward or reverse biased		
120.	Univ	versal logic gates are :				
	(A)	AND and OR	(B)	OR and X-OR		
	(C)	AND and NAND	(D)	NAND and NOR		

ROUGH WORK

ROUGH WORK

