

PAPER II : MATHEMATICS

- 1. What ist the sum of the squares of the roots of the equation $x^2 + 2x - 143 = 0$? (a) 170 (b) 180
 - (c) 190 (d) 290
- 2. Let $U = \{x \in N : 1 \le x \le 10\}$ be the universal set, N being the set of natural numbers. If $A = \{1, 2, 3, 4\}$ and $B = \{2, 3, 6, 10\}$ then what is the complement of (A B)?
 - (a) {6, 10}
 - (b) {1,4}
 - (c) {2, 3, 5, 6, 7, 8, 9, 10}
 - (d) {5, 6, 7, 8, 9, 10}
- 3. The solution of the simultaneous linear equations 2x + y = 6 and 3y = 8 + 4x will also be satisfied by which one of the following linear equations ?
 - (a) x + y = 5 (b) 2x + y = 9
 - (c) 2x 3y = 10 (d) 2x + 3y = 6
- 4. Let A = {x : x is a square of a natural number and x is less than 100} and B is a set of even natural numbers. What is the cardinality of $A \cap B$?

(b) 5

5. If
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ then what is

determinant of AB?

(c) 10

(d) 20

6. What is $\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix}$ equal to ? (a) 4abc (b) $4a^2bc$

(c) $4a^2b^2c^2$ (d) $-4a^2b^2c^2$

- 7. What is the distance between the lines 3x + 4y = 9 and 6x + 8y = 18?
 - (a) 0 (b) 3 units
 - (c) 9 units (d) 18 units
- 8. The number 292 in decimal system is expressed in binary system by
 - (a) 100001010 (b) 100010001
 - (c) 100100100 (d) 101010000
- 9. What is the arithmetic mean of first 16 natural numbers with weights being the number itself?

(a)	17/2	(b)	33/2
(c)	11	(d)	187/2

- 11. A and B are two matrices such that AB = A and BA = B then what is B² equal to ?
 - (a) B (b) A (c) I (d) -I
- 12. The geometric mean and harmonic mean of two non-negative observations are 10 and 8 respectively. Then what is the arithmetic

E.2			Solved Paper (2012-I)
(c) 1 and 3 only (d) 1, 14. What is the n th term of the 13, 17,?	5 tements : can take all values hich takes a finite cessarily discrete. tency distribution h are discrete. ents are correct ? and 3 only , 2 and 3 e sequence 1, 5, 9,	the first semest second semester. semester, how semesters? (a) 80 (c) 70 21. If a matrix A has one of the follow (a) B may not be (b) B should be (c) B and C sho (d) None of the	e equal to C equal to C uld be unit matrices above
(a) $2n - 1$ (b) $2n - 3$ (c) $4n - 3$ (d) N 15. What does the series $1 + 3$	Jone of the above		own. What is the probability mber will appear on each of (b) 1/18 (d) 1/36
16. If p, q, r are in AP as well a one of the following is corr (a) $p = q \neq r$ (b) p	None of the above as GP, then which rect? $p \neq q \neq r$ p = q = r ingle with vertices	The equation for root of $ax^2 + bx - = 0$. 23. What is b : c equa (a) 3 : 1 (c) 1 : 3	(b) 1 : 2 (d) 3 : 2 e following is correct ?
(a) $7+3\sqrt{2}$ (b) 1 (c) $11+6\sqrt{2}$ (d) 5 18. If the mid point between t a-b) and $(-a, b)$ lies on the what is k equal to ?	$0 + 5\sqrt{2}$ $5 + \sqrt{2}$ the points (a + b, e line ax + by = k,	(c) $bc = 72 a^2$ (d) $bc = 108 a^2$ For the next THR	(b) bc = 36 a ² EE (3) questions that follow: = 1 and sin (A – B) = 1/2, $\frac{f}{2}$.

- (b) a + b (d) a – b 19. The acute angle which the perpendicular
- from origin on the line 7x 3y = 4 makes with the x-axis is

(a) zero

(a) a/b

(c) ab

(b) positive but not $\pi/4$

(a) 80	(b) 40
(c) 70	(d) 140

- B and C, then which orrect?
 - to C
 - οC
 - unit matrices
- hat is the probability ill appear on each of

(a)	1/6	(b) 1/18
(c)	1/24	(d) 1/36

(a) 3:1	(b) 1:2
(c) 1:3	(d) 3:2

where
$$\mathbf{A}, \mathbf{B} \in \left[0, \frac{f}{2}\right]$$
.

25. What is the value of A?

(a)
$$\frac{f}{6}$$
 (b) $\frac{f}{3}$
(c) $\frac{f}{4}$ (d) $\frac{f}{8}$

Solved Paper (2012-I)

26. What is tan (A	A + 2B), tan (2A + B) eaual to ?
(a) – 1	(b) 0
(c) 1	(d) 2
27. What is sin ² A	$\Lambda - \sin^2 B$ equal to ?
(a) 0	(b) 1/2
(c) 1	(d) 2

- 28. If the latus rectum of an ellipse is equal to half of the minor axis, then what is its eccentricity?
 - (b) $1/\sqrt{3}$ (a) $2/\sqrt{3}$
 - (c) $\sqrt{3}/2$ (d) $1/\sqrt{2}$
- 29. What is the probability that a leap year selected at random contains 53 Mondays ?

(a) 1/7	7	(b)	2/7
	244	(1)	0 (/1 00

- (d) 26/183 (c) 7/366
- 30. What is the decimal number representation of the binary number (11101.001)₂?

(a) 30.125	(b) 29.025
(c) 29.125	(d) 28.025

- 31. What is the equation of line passing through (0, 1) and making an angle with the y-axis equal to the inclination of the line x - y = 4with x-axis ?
 - (a) y = x + 1(b) x = y + 1(c) 2x = y + 2(d) None of the above
- 32. What is $\tan\left(\frac{f}{12}\right)$ equal to ?
 - (a) $2 \sqrt{3}$ (b) $2 + \sqrt{3}$

(c)
$$\sqrt{2} - \sqrt{3}$$
 (d) $\sqrt{3} - \sqrt{2}$

33. If $\theta = 18^\circ$, then what is the value of $4 \sin^2 \theta +$ $2\sin\theta$?

(a) – 1	(b) 1
(c) 0	(d) 2

34. Two poles are 10 m and 20 m high. The line joining their tips makes an angle of 15° with the horizontal. What is the distance between the poles?

(a)
$$10(\sqrt{3}-1)m$$
 (b) $5(4+2\sqrt{3})m$

(c)
$$20(\sqrt{3}+1)m$$
 (d) $10(\sqrt{3}+1)m$

E.3

36. In a triangle ABC if the angles A, B, C are in AP, then which one of the following is correct?

(a)
$$c = a + b$$
 (b) $c^2 = a^2 + b^2 - ab$
(c) $a^2 = b^2 + c^2 - bc$ (d) $b^2 = a^2 + c^2 - ac$

37. If $\sin^{-1} + \sin^{-1}\frac{4}{5} = \sin^{-1}x$, then what is x

4/5

38. If cosec θ – cot $\theta = \frac{1}{\sqrt{3}}$ where $\theta \neq 0$, then

what is the value of $\cos \theta$?

(a) 0	(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{1}{2}$	(d) $\frac{1}{\sqrt{2}}$

39. From the top of a building of height h metre, the angle of depression of an object on the ground is θ . What is the distance (in metre) of the object from the foot of the building?

(a) $h \cot \theta$	(b) h tan θ
(c) $h \cos \theta$	(d) $h \sin \theta$

- 40. If tan⁻¹2, tan⁻¹3 are two angles of a triangle, then what is the third angle?
 - (a) tan⁻¹ 2 (b) tan⁻¹ 4 (c) $\pi/4$ (d) $\pi/3$
- 41. What is the maximum value of $\sin 3\theta \cos 2\theta$ $+\cos 3\theta \sin 2\theta$?

42. What is $\sin A \cos A \tan A + \cos A \sin A \cot A$ equal to?

(a) sin A	(b) cos A
(c) tan A	(d) 1

(5)

	5	
43. What is the value of $\sec^2 \tan^{-1}$?
	VT17	

E.4

- (a) 121/96 (b) 217/921
- (c) 146/121 (d) 267/121
- 44. Which one of the following is positive in the third quadrant?
 - (a) $\sin \theta$ (b) $\cos \theta$
 - (c) $\tan \theta$ (d) $\sec \theta$
- 45. What is the value of sin (1920°)?

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{\sqrt{2}}$
(c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{3}$

- 46. The angle of elevation of the tip of a flag staff from a point 10 m due South of its base in 60°. What is the height of the flag staff corrct to the nearst metre?
 - (a) 15 m (b) 16 m (c) 17 m (d) 18 m

47. What is
$$\frac{\sin \pi}{\csc \pi} + \frac{\cos \pi}{\sec \pi}$$
 equal to?
(a) 1 (b) 1/2
(c) 1/3 (d) 2

- 48. If $\tan \theta + \sec \theta = 4$, then what is the value of $\sin \theta$?
 - (a) 8/17 (b) 8/15 (c) 15/17 (d) 23/32
- 49. What is the value of $\cos\left\{\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}\right\}$?

50. What is the angle subtended by 1 m pole at a distance 1 km on the ground in sexagesimal measure?

(a)
$$\frac{9}{50f}$$
 degree (b) $\frac{9}{5f}$ degree

- (c) 3.4 minute
- (d) 3.5 minute

Solved Paper (2012-I)

- 51. If $\cot A \cdot \cot B = 2$, then what is the value of $\cos(A+B)$. $\sec(A-B)$?
 - (a) 1/3 (b) 2/3
 - (c) 1 (d) - 1
- 52. Consider the following statements :
 - 1. Every zero matrix is a square matrix.
 - 2. A matrix has a numerical value.
 - 3. A unit matrix is a diagonal matrix.
 - Which of the above statements is/are correct?
 - (a) 2 only (b) 3 only
 - (c) 2 and 3
 - (d) 1 and 3
- 53. If the sequence $\{S_n\}$ is a geometric progression and $S_2 \tilde{S_{11}} = S_p \tilde{S_{8'}}$ then what is the value of p?

(b) 3

- (a) 1
- (c) 5
- (d) cannot be determined
- 54. In the expansion of $(1 + x)^n$, what is the sum of even binomial coefficients? (b) 2ⁿ⁻¹
 - (a) 2ⁿ
 - (c) 2^{n+1}
 - (d) None of the above
- 55. The value of the term independent of x in the

expansion of
$$\left(x^2 - \frac{1}{x}\right)^9$$
 is

(c)
$$48$$
 (d) 84

56. What is the number of ways that 4 boys and 3 girls can be seated so that boys and girls alternate? (1-) 70 (a) 12

57. If the difference between the roots of $ax^2 + bx + c = 0$ is 1, then which one of the following is correct?

(a)
$$b^2 = a(a + 4c)$$

- (b) $a^2 = b(b + 4c)$
- (c) $a^2 = c(a + 4c)$
- (d) $b^2 = a(b + 4c)$
- 58. If one of the roots of the equation

Solved Paper (2012-I)

 $x^{2} + ax - b = 0$ is 1, then what is (a - b) equal to? (a) – 1 (b) 1 (c) 2 (d) - 2 59. If α and β are the roots of the equation x^2 – q(1 + x) - r = 0. then what is $(1 + \alpha) (1 + \beta)$ equal to? (a) 1 – r (b) q - r (c) 1 + r(d) q + r60. If 1/4, 1/x, 1/10 are in HP, then what is the value of x? (a) 5 (b) 6 (c) 7 (d) 8 61. If f(xy) = f(x)f(y), then f(t) may be of the form: (b) ct + k (a) t + k(c) $t^{k} + c$ (d) t^k 62. If A + iB = $\frac{4+2i}{1-2i}$ where i = $\sqrt{-1}$, then what is the value of A? (a) – 8 (b) 0 (c) 4 (d) 8

- 63. If $z = \overline{z}$, then which one of the following is correct?
 - (a) The real part of z is zero.
 - (b) The imaginary part of z is zero.
 - (c) the real part of z is equal to imaginary part of z.
 - (d) The sum of real and imaginary parts of z is z.
- 64. If A and B are two non-empty sets having n elements in common, then what is the number of common elements in the sets A × B and B × A?
 - (a) n (b) n²
 - (c) 2n (d) zero
- 65. If A and B are any two sets, then what is $A \cap (A \cup B)$ equal to ?
 - (a) Complement of A
 - (b) Complement of B
 - (c) B
 - (d) A
- 66. What is the cosine of angle between the

planes x + y + z + 1 = 0 and 2x - 2y + 2z + 1 = 0? (a) 1/2 (b) 1/3 (c) 2/3 (d) None of the above 67. If A = $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$, then what is B⁻¹ A⁻¹ equal to ? (a) $\begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 3 \\ -1 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -3 \\ 1 & -2 \end{bmatrix}$

E.5

68. Which one of the following functions is differentiable for all real values of x?

(a)	$\frac{x}{ x }$	(b)	x x
(c)	$\frac{1}{ x }$	(d)	$\frac{1}{x}$

69. Which of the following differential equations is not linear?

(a)
$$\frac{d^2y}{dx^2} + 4y = 0$$
 (b)
$$x\frac{dy}{dx} + y = x^3$$

(c)
$$(x - y)^2 \frac{dy}{dx} = 9$$

(d)
$$\cos^2 x \frac{dy}{dx} + y = \tan x$$

70. What is the sum of the squares of direction cosines of the line joining the points (1, 2, -3) and (-2, 3, 1)?

1

(c) 3 (d)
$$\frac{2}{\sqrt{26}}$$

- 71. What is the diameter of the sphere $x^2 + y^2 + z^2 4x + 6y 8z 7 = 0$
 - (a) 4 units (b) 5 units
 - (c) 6 units (d) 12 units

E.6

Solved Paper (2012-I)

- 72. What is the slope of the tangent to the curve (a) 7/6 (b) 6/7(c) 1 (d) 5/6
- 73. Which one of the following statements is correct?
 - (a) e^x is an increasing function
 - (b) e^x is decreasing function
 - (c) e^x is neither increasing nor decreasing function
 - (d) e^x is a constant function

74. If
$$y = \cos t$$
 and $x = \sin t$, then what is $\frac{dy}{dx}$

equal to ?

- (a) xy (b) x/y(c) -y/x (d) -x/y
- 75. What is $\int (x^2 + 1)^{\frac{5}{2}} x dx$ equal to?
 - (a) $(x^{2} + 1)^{\frac{7}{2}} + c$ (b) $\frac{2}{7}(x^{2} + 1)^{\frac{7}{2}} + c$ (c) $\frac{1}{7}(x^{2} + 1)^{\frac{7}{2}} + c$ (d) None of the above

where c is a constant of integration.

- 76. If $f(x) = x^2 6x + 8$ and there exists a point c in the interval {2, 4] such that f'(c) = 0, then what is the value of c?
 - (a) 2.5 (b) 2.8 (c) 3 (d) 3.5
 - 8 -5 1
- 77. If $\begin{vmatrix} 0 & 0 & 1 \\ 5 & x & 1 \\ 6 & 3 & 1 \end{vmatrix} = 2$, then what is the value of
 - x? (a) 4 (c) 6
- 78. What is the order of the product

(b) 5

(d) 8

$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}?$$
(a) 3×1
(b) 1×1
(c) 1×3
(b) 1×1
(d) 3×3
79. What is $\int_{-\frac{f}{2}}^{\frac{f}{2}} |\sin x| dx$ equal to ?
(a) 2
(b) 1
(c) π
(b) 1

- 80. The area bounded by the curve x = f(y), the y-axis and the two lines y = a and y = b is equal to :
- (a) $\int_{a}^{b} y \, dx$ (b) $\int_{a}^{b} y^2 \, dx$ (c) $\int_{a}^{b} x \, dy$ (d) None of the above

81. If
$$y = \frac{x+1}{x-1}$$
, then what is $\frac{dy}{dx}$ equal to?

(a)
$$\frac{-}{x-1}$$
 (b) $\frac{-}{(x-1)^2}$
(c) $\frac{2}{(x-1)^2}$ (d) $\frac{2}{(x-1)}$

- 82. Which one of the following statement is correct?
 - (a) The derivative of a function f(x) at a point will exist if there is one tangent to the curve y = f(x) at that point and the tangent if parallel to y-axis
 - (b) The derivative of a function f(x) at a point will exist if there is one tangent to the curve y = f(x) at that point and the tangent must be parallel to x-axis
 - (c) The derivative of a function f(x) at a point will exist if there is one and only one

Solved Paper (2012-I)

tangent to the curve y = y(x) at the point and the tangent is not parallel to y-axis

- (d) None of the above
- 83. Consider the following :

1. $\int \ln 10 dx = x + c$

2. $\int 10^x dx = 10^x + c$

where c is the constant integration. Which of the above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

84. How many tangents are parallel to x-axis 2-4x+3?

- (a) 1
- (b) 2
- (c) 3
- (d) No tangent is parallel to x-axis

85. What is
$$\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right)$$
 equal to ?
(a) 0 (b) 1
(c) 1/2 (d) Limit does not exist

86. What is
$$\lim_{x \to -2} \left(\frac{x+2}{x^3+8} \right)$$
 equal to ?
(a) $1/4$ (b) $-1/4$
(c) $1/12$ (d) $-1/12$

87. What is the solution of the differential

equation
$$\frac{dy}{dx} + \frac{y}{x} = 0$$
?
(a) $xy = c$ (b) $x = cy$
(c) $y = cx$ (d) None of the above
where c is a constant.

88. What is the degree of the differential equation

$$y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-1} ?$$
(a) 1 (b) 2
(c) -1 (c) -1

(d) Degree does not exist

89. What is
$$\int_{0}^{1} \frac{\tan^{-1} x}{1 + x^{2}} dx$$
 equal to ?
(a) $\frac{f}{4}$ (b) $\frac{f}{8}$
(c) $\frac{f^{2}}{8}$ (d) $\frac{f^{2}}{32}$

- 90. What is the rate of change of $\sqrt{x^2 + 16}$ with respect to x^2 at x = 3 ?
 - (a) 1/5 (b) 1/10

(c) 1/20 (d) None of the above

E.7

91. If $\vec{a} = (2, 1, -1)$, $\vec{b} = (1, -1, 0)$, $\vec{c} = (5, -1, 1)$, then what is the unit vector parallel to $\vec{a} + \vec{b} + \vec{c}$ in the opposite direction ?

(a)
$$\frac{\hat{i}+\hat{j}-2\hat{k}}{3}$$
 (b) $\frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$
(c) $\frac{2\hat{i}-\hat{j}+2\hat{k}}{3}$ (d) None of the above

- 92. If the magnitudes of two vectors \vec{a} and \vec{b} are equal then which one of the following is correct ?
 - (a) $(\vec{a} + \vec{b})$ is parallel to $(\vec{a} \vec{b})$
 - (b) $(\vec{a} + \vec{b}) \bullet (\vec{a} \vec{b}) = 1$
 - (c) $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} \vec{b})$
 - (d) None of the above
- 93. Consider the following in respect of the function f(x) = |x 3|.
 - 1. f(x) is continuous at x = 3
 - 2. f(x) is differentiable at x = 0
 - Which of the above statements is/are correct?
 - (a) 1 only
 - (b) 2 only

E.8	Solved Paper (2012-I)
 (c) Both 1 and 2 (d) Neither 1 nor 2 94. If four dice are thrown together, then what the probability that the sum of the number appearing on them is 25 ? (a) 0 (b) 1/2 (c) 1 (d) 1/1296 95. Let O be the origin and P, Q, R be the point 	rs 101. What is the eccentricity of the conic $4x^2 + 9y^2 = 144$? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{4}$
such that $\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$. Then which one of the following is correct? (a) P, Q, R are the vertices of an equilater triangle (b) P, Q, R are the vertices of an isoscele triangle (c) P, Q, R are collinear (d) None of the above 96. What is the value of $2\log_8 2 - \frac{1}{3}\log_3 9$? (a) 0 (b) 1 (c) 2 (d) 1/3 97. What is the value of m if the vectors $2\hat{i} - \hat{j} + \hat{k}$	The first of the formula form
$\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + m\hat{j} + 5\hat{k}$ are coplanar \hat{a} (a) -2 (b) 2 (c) -4 (d) 4 98. If $ \vec{a} = 10$, $ \vec{b} = 2$ and $\vec{a} \cdot \vec{b} = 12$, then what	(c) $ \mu $ (d) $ g $ 105. If ABCD is a cyclic quadrilateral then what is sin A + sin B - sin C - sin D equal to ? is (a) 0 (b) 1 (c) 2 (d) 2 (sin A + sin B)
the value of $ \vec{a} \times \vec{b} $? (a) 12 (b) 16 (c) 20 (d) 24 99. If the vectors $\hat{i} - x\hat{j} - y\hat{k}$ and $\hat{i} + x\hat{j} - y\hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y)? (a) a parabola (b) an ellipse (c) a circle (d) a straight line	8

100. If A is square matrix such that $A^2 = 1$ where I is the identity matrix, then what is A^{-1} equal

Which of the above statements is/are correct?

(a) 1 only (b) 2 only

Solved Paper (2012-I)

108. What is the maximum value of $\sin^2 x$?

(a) -1 (b) 0 (c) 1 (d) Infinity

- 109. The sum and product of matrices A and B exist. Which of the following implications are necessarily true ?
 - 1. A and B square matrices of same order.
 - 2. A and B are non-singular matrices.

Select the correct answer using the code given below :

(b) 2 only

- (a) 1 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 110. What is thea area of the rectangle having vertices A, BC and D with position vectors

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \quad \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \quad \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \text{ and}$$

$$-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$
?

- (a) 1/2 square unit
- (b) 1 square unit
- (c) 2 square unit
- (d) 4 square unit
- 111. The set $A = \{x : x + 4 = 4\}$ can also be represented by:
 - (a) 0 (b) φ
 - (c) $\{\phi\}$ (d) $\{0\}$
- 112. If a line makes the angles α , β , γ with the axes, then what is the value of $1 + \cos 2\alpha + \cos 2\beta + \cos 2\gamma$ equal to ? (a) -1 (b) 0
 - (c) 1 (d) 2
- 113. What is the sum of the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots \text{ equal to ?}$$

(a) 1/2 (b) 3/2
(c) 2 (d) 2/3

- 114. Consider the following statements :
 - 1. Two independent variables are always uncorrelated.

2. The coefficient of correlation between two variables X and Y is positive when X decreases then Y decreases.

E.9

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 115. A variate X takes values 2, 9, 3, 7, 5, 4, 3, 2, 10. What is the median ?
 - (a) 2 (b) 4
 - (c) 7 (d) 9
- 116. What are the direction ratios of normal to the plane 2x y + 2z + 1 = 0?

(a)
$$\langle 2, 1, 2 \rangle$$
 (b) $\langle 1, -\frac{1}{2}, 1 \rangle$

(c) $\langle 1, -2, 1 \rangle$ (d) None of the above

For the next Four (4) questions that follow :

In a city, three daily newspapers A, B, C are publishied, 42% read A; 51% read B; 68% read C; 30% read A and B; 28% read B and C; 36% read A and C; 8% do not read any of the three newpapers.

- 117. What is the percentage of persons who read all the three papers?
 - (a) 20% (b) 25%
 - (c) 30% (d) 40%
- 118. What is the percentage of persons who read only two papers ?
 - (a) 19% (b) 31%
 - (c) 44% (d) None of the above
- 119. What is the percentage of persons who read only one paper ?
 - (a) 38% (b) 48%
 - (c) 51% (d) None of the above
- 120. What is the percentage of persons who read only A but neither B nor C?
 - (a) 4% (b) 3%
 - (c) 1% (d) None of the above

		E.10

```
Solved Paper (2012-I)
```

			Paper	II :	Mathema	atics			
1. (d)	2. (c)	3. (a)	4. (a)	5. (a)	6. (c)	7. (a)	8. (c)	9. (a)	10. (c)
11. (b)	12. (c)	13. (b)	14. (c)	15. (d)	16. (d)	17. (b)	18. (c)	19. (b)	20. (d)
21. (b)	22. (d)	23. (a)	24. (d)	25. (b)	26. (c)	27. (b)	28. (c)	29. (b)	30. (c)
31. (a)	32. (a)	33. (b)	34. (b)	35. (b)	36. (d)	37. (a)	38. (b)	39. (a)	40. (c)
41. (a)	42. (d)	43. (c)	44. (c)	45. (c)	46. (c)	47. (a)	48. (c)	49. (b)	50. (a)
51. (a)	52. (b)	53. (c)	54. (b)	55. (d)	56. (d)	57. (a)	58. (a)	59. (a)	60. (c)
61. (d)	62. (b)	63. (a)	64. (b)	65. (d)	66. (b)	67. (b)	68. (b)	69. (a)	70. (b)
71. (c)	72. (b)	73. (a)	74. (d)	75. (c)	76. (c)	77. (d)	78. (b)	79. (a)	80. (c)
81. (b)	82. (c)	83. (a)	84. (a)	85. (a)	86. (c)	87. (a)	88. (b)	89. (d)	90. (b)
91. (c)	92. (c)	93. (b)	94. (a)	95. (a)	96. (a)	97. (c)	98. (b)	99. (b)	100. (c)
101. (a)	102. (a)	103. (d)	104. (d)	105. (a)	106. (b)	107. (c)	108. (c)	109. (a)	110. (b)
111. (d)	112. (b)	113. (d)	114. (a)	115. (b)	116. (b)	117. (b)	118. (a)	119. (b)	120. (c)