<u>A</u>

Ouestion Booklet Series

MATHEMATICS

CODE :- 12

Time Allowed: Two Hours		Marks: 100
Name:	Roll No	

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

Series-A

Q.1: If A is a (3x3) no	n-singular matrix such the	at $AA^T = A^T A$ and B	$B = A^{-1}A^{T}$, then BB^{T} is	
(A) <i>I</i> +B	(B) I	(C) A+B	(D) AB	
Q.2: If A is a (2x2) no	n-singular matrix, then th	` '	• ,	
(A) A	(B) <i>I</i>	(C) A^2	(D) –A	
Q.3: Let P and Q be (3	3x3) matrices with P≠ Q.	If $P^3=Q^3$ and $P^2Q=Q^2$	P, then the determinant of (P ² +Q ²) is	
(A) 1	(B) 0	(C) 2	(D) •2	
Q.4: If A & B are (nxr	n) matrices, then which of	the following statem	ents is generally invalid	
(A) If A ⁴ has a	in inverse, so has A	(B) If AB has a	an inverse, so has B	
$(C) \alpha A = \alpha A$	1, for any positive value	of α (D) $ A^{-1}BA $	$ A^2 = A B $	
Q.5: Let $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. If $u_1 \& u_2$ are column	matrices such that A	$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} & Au_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$	
then $(u_1 + u_2)$				
(A) $[-1, 1, 0]^T$	(B) $[-1,1,-1]^T$	(C) [-1,-1,0	$[D]^{T}$ (D) $[1,-1,-1]^{T}$	
Q.6: If A is the singular	ar matrix then $A(adj A)$ is	S		
(A) Identity m	natrix (B) null matrix	x (C) scalar ma	trix (D) symmetric matrix	
Q.7: If A is skew symmetric or the symme	metric matrix of order (n	x n), then the trace of	A is	
(A) n	(B) –n	(C) 0	(D) n^2	
$\mathbf{Q.8:} \text{ If } A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \&$	$A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then x is	3 .		
(A) 1	, ,	(C) ½	(D) -2	
Q.9: If $\begin{vmatrix} \sin\alpha & \cos\beta \\ \cos\alpha & \sin\beta \end{vmatrix}$	$=\frac{1}{2}$, where $\alpha \& \beta$ are act	ute angels, then the va	alue of $(\alpha + \beta)$ is	
$(A) 2\pi/3$	(B) $\pi/3$	(C) $\pi/6$	(D) $-\pi/6$	
Q.10: If A is a non-sin	gular matrix of order 3 su	adj A = 22	25, then $ A' $ is	
(A) 225	(B) 25	(C) 15	(D) 20	
Q.11: The largest value	e of a third order determin	nant, whose elements	are 0 or 1 is	
(A) 1	(B) 0	(C) 2	(D) 3	
Q.12: If P(1,2), Q(4,6), R(5,7) and S(a,b) are the vertices of a parallelogram PQRS, then (a, b) is				
(A) (2, 4)	(B)(3,4)	(C)(2,3)	(D) (3, 5)	
Q.13: The distance between the parallel lines $y = 2x + 4$ and $6x = 3y + 5$ is				
$(A)\frac{17}{\sqrt{3}}$	(B) 1	(C) 3	$(D)\frac{17\sqrt{5}}{15}$	
Q.14: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the				
ellipse $2x^2 + y^2 = 4$, then the value of m^2 is				
(A) 4	(B) 16	(C) 2	(D) -2	
KL14/Maths		Series- A	1	

Q.15: An equation of	a plane parallel to	the plane $x - 2y + 2z =$	5 and at a unit dist	ance from origin is	
(A) x - 2y +	(A) x - 2y + 2z = 3		(B)x - 2y + 2z = -1		
(C) x - 2y +	2z=1	(D)x - 2y + 2z = 0	= -5		
Q.16: The length of th	ne diameter of the c	ircle which touches the x	axis at the point (1,	0) and passes	
through the poi	nt (2,3) is				
(A) 10/3	(B) 3/5	(C) 6/5	(D) 5/3		
Q.17: An ellipse is dra	ıwn by taking a diar	meter of the circle $(x-1)$	$x^2 + y^2 = 1$, as its s	emi minor axis	
and a diameter	of the circle $x^2 + ($	$(y-2)^2 = 4$, as semi majo	or axis. If the centre	of the ellipse is	
the origin and its	axis are the coordi	nate axis, then the equatio	n of the ellipse is		
$(A)4x^2 + y^2 =$	= 4	$(B)x^2 + 4y^2 = 8$	3		
$(C)4x^2 + y^2 =$	8	$(D)x^2 + 4y^2 = 1$	16		
Q.18: The equation of	of the tangent to the	curve $y = x + \frac{4}{x^2}$, that is	parallel to x axis is		
(A) y=1	(B) y=2	(C) $y=3$	(D) $y=0$		
Q.19: If two tangents	s are drawnfrom a p	point P to the parabola y ² =	4x are at right angle	es, then the locus	
of P is					
(A) $2x+1=0$	(B) $x=-1$	(C) $2x-1=0$	(D) $x=1$		
Q.20: If the vectors \bar{a}	$\bar{i}=i-j+2k, \bar{b}=$	$= 2i + 4j + k, \bar{c} = \lambda i + j + k$	$\vdash \mu k$ are mutually of	orthogonal,	
then (λ, μ) is					
(A)(2,-3)	(B) (-2,3)	(C) (3,-2)	(D) (-3,2)		
Q.21:The line L is gi	$ven by \frac{x}{5} + \frac{y}{b} = 1$, passes through the point	(13,32).The K is p	arallel to L and	
has the equation	$\operatorname{on}\frac{x}{c} + \frac{y}{3} = 1, \text{ the}$	en the distance between L	and K is		
$(A)\sqrt{17}$	(B) $\sqrt{17}/12$	(C)23/ $\sqrt{17}$	$(D)\sqrt{17}/\sqrt{2}$	<u>15</u>	
-	•	5, intersect the line $3x - 4$			
(A) $-35 < m$	a < 15 (B)	15 < m < 65 (C) 35	$5 < m < 85 \tag{1}$	D) $-85 < m < -35$	
Q.23: Let \hat{a} and \hat{b} are	two unit vectors. If	f the vectors $\hat{c} = \hat{a} + 2\hat{b}$ are	$ad \hat{d} = 5\hat{a} - 4\hat{b}$ are p	erpendicular to	
each other, then	the angles between	n \hat{a} and \hat{b} is			
$(A)\pi/6$	(B) $\pi/2$	(C) $\pi/3$	(D) $\pi/4$		
Q.24: Let the line $\frac{x-2}{3}$	$\frac{2}{x} = \frac{y-1}{-5} = \frac{z+2}{2}$	lies in the plane $x + 3y -$	$\alpha z + \beta = 0$, then	(α, β) is	
(A) (6,-17)	(B) (-6,7)	(C) (5,-15)	(D) (5,-15)		

Series- A

KL14/Maths

DOWNLOADED FROM : WWW.IASEXAMPORTAL.COM

2

DOWNLOADED FROM : WWW.IASEXAMPORTAL.COM

Q.25: If \bar{a} , \bar{b} , \bar{c} are three m	utually perpendicular v	ectors each of magnitude	e unity, then $ \bar{a} + \bar{b} + \bar{c} $ is
equal to			
(A) 3	(B) 1	(C)√3	(D) 2
Q.26: If θ is the angle beton	tween \bar{a} and \bar{b} such the	at $\bar{a}\cdot \bar{b}>0$, then `	
$(A)0 \le \theta \le \pi ($	$(B)\pi/2 \le \theta \le \pi \qquad (9)$	$C)0 \le \theta \le \pi/2$	$(D)0 \le \theta \le 2\pi$
Q.27: The point of interse	ection of the curves r^2	$= 4 \cos\theta$ and $r = 1 - \frac{1}{2}$	cos heta is
(A) $(2\sqrt{2}-2,80)$	(B) $(2,60^{\circ})$	$(C)(3,70^\circ)$	$(D) (-2\sqrt{2}, 80^{\circ})$
Q.28: If $f: R \to R$ is give	n by f(x) = 3x - 5, th	$en f^{-1}(x)$ is	
$(A)\frac{1}{3x-5}$		$(B)\frac{x+5}{3}$	
on c		2	
• •			t exist because $f(x)$ is not on to
Q.29: If $f(x) = \sin^2 x + \frac{1}{2}$	$-\sin^2\left(x+\frac{\pi}{3}\right)+\cos x.$	$\cos\left(x+\frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right)=$	= 1, then $gof(x)$ is
(A) 1	(B) 0	(C) $\sin x$	(D) $\cos x$
Q.30: If the non-zero num	mbers x, y, z are in A.P	and $tan^{-1}(x)$, $tan^{-1}(y)$), $tan^{-1}(z)$ are also in A.P., then
(A)x = y = z	(B)xy = yz	$(C)x^2 = yz$	$(D)z^2 = xy$
Q.31: If $a^x = b^y = c^z a^y$	nd a, b, c are in G.P., the	nen x, y, z are in	
(A) AP	(B) GP	(C) HP	(D) $x=y=z$
Q.32: The HM of two nur		etic mean A and geometr	ic mean G satisfy the
	, then the numbers are		
(A) 6, 3		` , ,	(D) -3,1
Q.33: If $\lim_{n\to\infty} \left(\frac{x^2}{x+1} - \frac{x^2}{x+1}\right)$	(ax - b) = 0, then the	value of (a, b) is equal to)
(A)(1,-1)	(B) (2,-1)	(C) (-1,2)	(D)(2,2)
Q.34: The value of \lim_{x}	$_{c\to 0}\{\tan\left(\frac{\pi}{4}+x\right)\}^{1/x}$ is		
(A) 1	(B) -1	$(C)e^2$	(D) <i>e</i>
Q.35: If $f(x) = a sinx $	$ + be^{ x } + c x ^3$ and if	f(x) is differentiable at	x=0, then
(A) $a = b = c$	$= 0$ (B) $a=b=0, c \in R$	(C) b=c=0, a ∈	R (D) a=c=0, b ∈ R
Q.36: Let $f(x) = \begin{cases} \frac{1}{ x }, \\ ax^2 \end{cases}$	$ x \ge 1$ $ x \le 1$; if $f(x)$ is	s continuous and differen	tiable at any point, then
(A) $a=1/2,b=-$	-3/2 (B) a=-1/2,b=3/2	(C) $a=1,b=-1$	(D) $a=-1$, $b=1$
Q.37: Let $f(x)$ be a twice	e differentiable function	such that $f''(x) = -f(x)$	f'(x) = g(x),
$h(x) = \{f(x)\}^2$	+ ${g(x)}^2$, If h (5) = 1	1, then h (10) is equal to	
(A) 22	(B) 11	(C) 0	(D) -22
KL14/Maths		Series- A	3

Q.38: If $f(x + y) = f(x)$.	$f(y)$, for all $x, y \in$	R, & f(5) = 2, f'(0) =	3, then $f'(5)$ is	
(A) 6	(B) 3	(C) 5	(D) 7	
Q.39: If $y = 4x - 5$ is a	tangent to the curve	$y^2 = px^3 + q$ at (2, 3), th	en (p, q) is equal to	
(A)(2,-7)	(B)(-2,7)	(C) (-2,-7)	(D) (2, 7)	
Q.40: The length of the	normal at t on the cur	ve x = a(t + sint), y = c	a(1-cost) is	
(A) $a \sin(t)$	(4)	$\sec(t)$ (C)2 asin $\left(\frac{t}{2}\right)$		
$\mathbf{Q.41:} \ \mathrm{If} \ f(x) = a \ \ln x $	$+bx^2 + x$ has its ex	tremum values at x=-1, x=	=2, then (a, b) is equal to	
(A)(2,-1)	(B) (2,-1/2)	(C) (-2, 1/2)		
Q.42: Let $f(x) = x - 1 $	+ x-2 , then the	derivative of $f(x)$ at $x=1/x$		
(A) -2	(B) - 1/2	(C) ½	(D) 2	
Q.43: If 2a+3b+6c=0, th	en at least one root o	f the equation $ax^2 + bx + b$	-c = 0, lies in the interval	
	(B)(1,2)	(C)(2,3)	(D)(3,4)	
Q.44: If $\int \frac{2x^3+3}{(x^2-1)(x^2+4)} dx$	$x = a \ln \frac{x+1}{x-1} + b \tan x$			
(A) $(-1/2, \frac{1}{2})$	(B) $(1/2, \frac{1}{2})$	() , , ,	(D)(1,-1)	
Q.45: The integral $\int [1 - \frac{1}{2}]$	$+ x - 1/x] e^{x+1/x} dx$	c is equal to		
$(A)(x+1)e^{(x)}$	$^{+1/x)}+C$ (B) $xe^{(x+1/x)}$	$(C)(x-1)e^{(x)}$	$+1/x$) +C (D) $e^{(x+1/x)}$ +C	
Q.46: The value of the	integral $\int_0^{\pi} \sqrt{(1+4)^n}$	$\sin^2 x/2 - 4\sin x/2) dx$	is	
$(A)\pi - 4$	$(B)\frac{2\pi}{3}-4$	$-4\sqrt{3}$ (C)-4 + $4\sqrt{3}$	(D) $-\frac{\pi}{3} - 4 + 4\sqrt{3}$	
Q.47: The value of the	integral $\int_{-1}^{1} \sqrt{(1+x)}$	$\sqrt{(1-x)}dx$ is		
$(A)\pi$	$(B) - \pi$	$(C)\frac{\pi}{2}$	(D) Does not exist	
Q.48: The line segment	$x = \sin^2(t), y = c$	$\cos^2(t)$; $0 \le t \le \pi/2$, is 1	evolved about the y axis, Then the	
	the solid generated i	S		
$(A) \pi \sqrt{2}$	(B) $2\sqrt{\pi}$	(C) $\sqrt{2\pi}$	(D) 2π	
Q.49: The curvature of	the curve $r = \sin 2$	θ at $\theta = \pi/4$ is		
(A) 5	(B) -5	(C) 5/2	(D) 2/5	
Q.50: The area bounde	d between the parabo	$\text{plas } x^2 = \frac{y}{4} \text{ and } x^2 = 9y^2$	and the straight line y=2 is	
$(A)^{\frac{10\sqrt{2}}{3}}$	$(B)^{\frac{20\sqrt{2}}{3}}$	(C)(10√2		
Q.51: An asymptote to	the curve $x^3 + y^3 -$	3xy = 0 is x + y + a = 0, th	en the value of a is	
(A) -1	(B) 1	(C) ½	(D) 2	
Q.52: The order and degree of differential equation $\left[\frac{d^2y}{dx^2} + y\right]^{3/2} = \left[\frac{dy}{dx}\right]^{2/3} + yx$ is				
(A) 2, 3	(B) 2, 9	(C) $2, \frac{3}{4}$	(D) not defined	
KL14/Maths		Series- A	4	

Q.53: The general soluti	on of the first orde	r equation x^2y' –	2xy = 3 is	
(A) $3/2 + \frac{c}{x^2}$	(B) $-3/2 + \frac{c}{x^2}$	(C) c	x^2-1/x	$(D) cx^2 + 1/x$
Q.54: The particular int	egral of $y'' + y =$	tan(x) is		
$(A)-\cos(x)\ln($	secx + tanx)	(B) ce	os (x) ln(secx	+ tanx)
$(C)-\sin(x)\ln(x)$	secx + tanx)	(D) s	in (x) ln(secx	+ tanx)
Q.55: The singular solu	tion of the differen	tial equation $y = x$	$xy' + y'^2$ is	
$(A)x^2 + 4y = 0$	$(B)x^2-4y$	$= 0 \qquad (C) - x$	$x^2 - 4y = 0$	$(D)-x^2+4xy=0$
Q.56: The curve in wh	ich the slope of the	tangent at any po	int equal to the	e ratio of abscissa to the
ordinate of the po	oint is an			
(A) Ellipse	(B) Parabola	(C) Rectang	ular hyperbola	(D) Circle
Q.57: If $f'(x) = f(x)$ 8	a f(1) = 2, then f(1)	(3) is equal to		
$(A) e^2$	$(B)2e^2$	$(C)3e^{2}$	2 ((D) $3e^3$
Q. 58: The value of i^{14} +	$-i^{20}+i^{333}+i^{40}$	3 (where $i = \sqrt{-}$	$\overline{1}$) is	
(A) 1	(B)-1	(C) 0	(D) 2	
Q. 59: The number of rea	al solutions of the e	quation $ x ^2 + 2$	x +2=0 are	
(A) 4	(B) 3	(C) 2	(D) 0	
Q. 60: If the ratio of the	oots of the equatio	$n ax^2 + bx + c =$	0 is r then $\frac{(r-1)^{-1}}{r}$	$\frac{(+1)^2}{r}$ is equal to
$(A)\frac{a^2}{bc}$	54	$(C)\frac{c^2}{ab}$	•	ape
Q. 61: If Z is a complex n	umber, then the gre	eatest and lowest v	alue of $ Z+1 $, if $ Z+1 \leq 3$ are
(A) 5, 0	(B) 8, 0	(C) 6, 0	(D) 9, 0)
Q. 62: The smallest positi	ve integral value o	f <i>n</i> for which $\left(\frac{1+i}{1-i}\right)$	$\int_{0}^{n} = 1$ is	
(A)8	(B) 12	(C) 16	(D) 4	
Q.63: If $1, \omega, \omega^2,$			of unity, then t	he value of
$(1-\omega)(1-\omega^2)$	$(1-\omega^{n-1})$	1) is		
(A) 0	(B) 1	(C)n	$(D)n^2$	
Q. 64: The complex numb				e to each other for
	$(2) \pi$ (B) x =	` ′		(D) no value of x
Q. 65: Let $f(x) = \sqrt{2}x^2$				
coefficients, when	f(x) is divided by	g(x) the remainder	is $5\sqrt{2} - \sqrt{3}$.	The quotient is given by
$(A)\sqrt{2}x -$	(-)	•	•	(D) $\sqrt{2}x + 3$
Q. 66: Let $(a^*(B)^2 = a^2 * b^2)$	for 'a' and 'b' are	in a group G, then	a*b equals	
(A) b*a	(B) e	(C) a*	e	(D) b*c
KL14/Maths		Series- A		5

Q. 67: The sum of 23 and 3	31 modulo 45 is			
(A) 5		(C) 7	(D) 9	
Q. 68: If 'a' is a generator	of a finite cyclic gro	oup G of order n, then the	e other generators of	of G are the
elements of the form				
(A) Prime nu		osite number (C) Rela	tively prime to n	(D) Zero
Q. 69: What is the order of	f the cyclic (1, 4, 5, 7	7)		
(A) 4	(B) 1	(C) 3	(D) 2	
Q. 70: How many differen	nt signals can be give	en with 5 different flags	by hosting any num	ber of them at
a time				
(A) 325	(B) 626	(C) 253	(D) 352	
Q. 71: What is the chance	of getting multiple of	of 2 on one and multiple	of 3 on the other in	a single throw
of dice				
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36	5
Q. 72: A person draws two	o cards with replaces	ment from a pack of 52 c	ards. What is the pr	obability that
he gets both the card				
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16	
Q. 73: The value of $P(x=2)$) in a binomial distri	bution when p= 1/6 and	n= 5 is	
	$(B)\frac{250}{7776}$			$D)\frac{25}{7776}$
Q.74: A purse contains 4 copper coins and 3 silver coins; the second purse contains 6 copper coins				
and 2 silver coins. A	coin is taken out of	any purse, the probability	that it is a copper	coin is
(A) 4/7	(B) 3/4	(C) 3/7	(D) 37/56	
Q.75: If the probability o	f a defective bolt is	$\frac{1}{10}$, then the moment of	coefficient of ske	wness is
(A) 0.0178	(B) 0.178	(C) 1.78	(D) 0.00178	
Q.76: A car hire firm has				
Day is distributed	as a poisson distrib	ution with mean 1.5. The	value of the propo	rtion of days on
which neither car i	s used.			
(A) 0.2231	(B) 0.2131	(C) 0.2321	(D) 0.223	
Q.77: Area of the norma	l curve between mea	n ordinate and ordinates	at 3 sigma distance	s from the
mean percentage o	f the total area is			
(A) 48.865	(B) 49.865	(C) 47.865	(D) 46.865	
Q.78: The numbers 3.2,	5.8, 7.9, and 4.5 hav	e the frequencies x , ($x+2$), $(x-3)$ and $(x+6)$ r	espectively. If
the arithmetic mean	n is 4.876, then the v	volume of x is		
(A) 4	(B) 3	(C) 0	(D) 5	
KL14/Maths		Series- A		6

Q.79: If the mean and	median of moderately a	symmetrical series are 2	6.8 and 27.9 respectively	
would be its most	probable mode	201100 410	o.o and 27.9 respectively	<i>x</i> nat
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33.1	
Q.80: If mean 30, S.D =	= 8, Karl Pearson's coef	ficient of skewness = +	0.40 the value of Mode is	
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8	
Q.81: In a frequency di	istribution the coefficien	its of skewness based or	quartiles is 0.6. If the sum	. .
the upper and lowe	r quartiles is 100 and m	edian is 38, then the val	ue of upper quartile is	1 01
(A) 50	(B) 70	(C) 60	(D) 80	
Q.82: Given $\mu_1 = 0$, μ_2	$=40, \mu_3=-100, \mu_4=$	= 200, then the value o	f the skewness in the distri	bution
is			and the missing the distill	oution
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64	
Q.83: If the value of coef	fficient of correlation be	tween two series is + 0.	and its probable errors is	
0.0128, what would	be the value of n		the producte entors is	
(A) 100	(B) 10	(C) 105	(D) 95	
Q.84: The coefficient of o	correlation between the	debenture prices and sha	re prices of a company wa	e
+ 0.8. If the sum of th	e squares of the differen	ces in ranks was 33, the	n the value of n is	3
(A) 10	(B) 11	(C) 9	(D) 8	
Q.85: Given that the regre	ssion equations of 'Y' o	n 'X' and 'X' on 'Y' are	respectively Y=X and	
4X = 3+Y, and that the	he second moment of x	about the origin is 2. Th	en the S.D of Y is	
(A) 0	(B) 1	(C) 2	(D) -2 ·	
Q.86: The angle between tw	vo forces each equal to	P' when their resultant:	is also equal to P is	
(A) 60°	(B) 180°	(C) 120^{0}	(D) 90 ⁰	
Q.87: The components of a	force of magnitude 10 N	I in the direction making	angles of 30° and 60°	
on its sides are				
$(A) 5\sqrt{3} N,$	(B) $5 N$,	(C) $5\sqrt{2} N.5N$	^(D) 5√5 <i>N</i> ,5 <i>N</i>	
Q.88: Three coplanar forces	acting on a particle are	in equilibrium. The ang	le between the first and the	
second is 60° and that	between the second and	d the third is 150°, then	he ratio of the magnitudes	of.
forces is			and of the magnitudes	OI
(A) 1: 2: $\sqrt{3}$	(B)1: $3:\sqrt{3}$	(C) 1:1:	$\sqrt{3}$ (D) 2.4	. /5
Q.89: The resultant of two un	nlike parallel forces of m	nagnitude 10N and 18N	$\sqrt{3}$ (D) 2: 1	÷ √3
distance of 12 cm. from	the line of action of the	e smaller forces, then the	distance between the	
lines of actions of the tv	wo forces is.		distance between the	
(A) $\frac{16}{3}$ cm	(B) $\frac{17}{3}$ cm	$(C)^{\frac{14}{3}}$ cm	$(D)^{\frac{13}{3}}$ cm	
	.	(- / 3		
KL14/Maths		Series- A	7	
			,	

Q.90: The moment of a force of	magnitude 25N acting along	g the positive direction of	x-axis about the
point (-1,3) is			
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units
Q.91: A couple of moment -60 u	nits act in the plane of the pa	aper. The arm of the coup	le if each force
is of magnitude 10 units is			
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units
Q.92: The average speed of a bi	cycle over a journey of 50 K	m, if it travels the first 10	Km. at 20 km/hr,
second 12 km in 1 hr and t	third 24 km at 8 km/hr. is		
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/h
Q.93: A particle starts with a ve	locity of 30m/s and moves in	n a straight live with const	ant acceleration. If
its velocity at the end of 6	seconds be 18 m/s, then the	distance traveled by the pa	article before
it comes to rest is			
(A) 224m	(B) 225m	(C) 220m	(D) 215m
Q.94: A ball is projected vertical	lly upward with a velocity of	f 112 m/s. How high will i	t rise
(A) 640m	(B) 630m	(C) 635m	(D) 639m
Q.95: A man walking at the rate	e of 6 km/h towards east, rain	n appears to fall vertically	downward. Actual
	actual velocity is 12 km/h is		
(A) 50°	(B) 60°	(C) 45°	(D) 55°
Q.96: The path of projectile in v	acuum is a		
(A) Circle	(B) Straight line	(C) Parabola	(D) Ellipse
Q.97: A particle is projected wit	th a velocity of 24m/s. at an	angle of elevation of 60° ,	then its time of
flight is			
(A) $(2.4)\sqrt{3}$ Secon	ds	(B) $(2.3)\sqrt{3}$ Seco	nds
(C) $(2.2)\sqrt{3}$ Seconds (D) $(2.1)\sqrt{3}$ Seconds			
Q.98: A particle is projected up	a smooth inclined plane of i	nclination 60° along the li	ne of greatest
slope. If it comes to inst	antaneous nest after 2 secon	ds, then the velocity of pr	ojection is (g=9.8m/s ²)
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se
Q.99: Like parallel forces act at	the vertices A, B, C of a tria	angle and are proportional	to the lengths
	vely. The centre of the force		
(A) Centroid		(B) Circum Centre	
(C) In-Centre		(D) None of these	
Q.100: A horizontal rod AB is s	uspended at its ends by two	vertical strings. The rod is	s of length 0.6
meter and weight 3 unit	s. Its centre of gravity is at a	distance 0.4 meter from f	orce A, then the
tension of the string at A			
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0
KL14/Maths	Serie	es- A	

KL14/Maths